Abstract

Phase birefringence in optical fibers typically fluctuates over their length due to geometrical imperfections induced from the drawing process or during installation. Currently commercially available fibers exhibit remarkably low birefringence, prompting a high standard for characterization methods. In this work, we detail a method that uses chirped-pulse phase-sensitive optical time-domain reflectometry to directly measure position-resolved linear birefringence of single-mode optical fibers. The technique is suitable for fiber characterization over lengths of tens of kilometers, relying on a fast measurement ($ {\sim} 1\,\, {\rm s} $) with single-ended access to the fiber. The proposed method is experimentally validated with three different commercial single-mode optical fibers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of the elliptical birefringence of single-mode optical fibers

Thierry Chartier, Ammar Hideur, Cafer Özkul, François Sanchez, and Guy M. Stéphan
Appl. Opt. 40(30) 5343-5353 (2001)

Measurement of birefringence correlation length in long, single-mode fibers

Andrea Galtarossa, Luca Palmieri, Marco Schiano, and Tiziana Tambosso
Opt. Lett. 26(13) 962-964 (2001)

Distributed characterization of bending effects on the birefringence of single-mode optical fibers

Luca Palmieri, Andrea Galtarossa, and Tommy Geisler
Opt. Lett. 35(14) 2481-2483 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Palmieri, A. Galtarossa, and T. Geisler, Opt. Lett. 35, 2481 (2010).
    [Crossref]
  2. I. P. Kaminow, IEEE J. Quantum Electron. 17, 15 (1981).
    [Crossref]
  3. L. Palmieri, T. Geisler, and A. Galtarossa, Opt. Express 20, 1 (2012).
    [Crossref]
  4. Y. Lu, X. Bao, L. Chen, S. Xie, and M. Pang, Opt. Lett. 37, 3936 (2012).
    [Crossref]
  5. A. J. Rogers, Appl. Opt. 20, 1060 (1981).
    [Crossref]
  6. J. N. Ross, Appl. Opt. 21, 3489 (1982).
    [Crossref]
  7. A. Galtarossa and L. Palmieri, J. Lightwave Technol. 22, 1103 (2004).
    [Crossref]
  8. M. Wegmuller, M. Legré, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
    [Crossref]
  9. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, J. Lightwave Technol. 24, 4149 (2006).
    [Crossref]
  10. M. A. Soto, A. Denisov, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, Proc. SPIE. 10323, 103238Z (2017).
    [Crossref]
  11. Y. Dong, L. Teng, H. Zhang, T. Jiang, and D. Zhou, Characterization of Distributed Birefringence in Optical Fibers (Springer, 2018), pp. 1–31.
  12. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, Opt. Express 23, 24923 (2015).
    [Crossref]
  13. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, J. Lightwave Technol. 27, 1142 (2009).
    [Crossref]
  14. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, Opt. Express 24, 13121 (2016).
    [Crossref]
  15. L. Costa, H. F. Martins, S. Martín-López, M. R. Fernández-Ruiz, and M. González-Herráez, J. Lightwave Technol. 37, 4487 (2019).
    [Crossref]
  16. H. D. Bhatta, L. Costa, A. Garcia-Ruiz, M. R. Fernandez-Ruiz, H. F. Martins, M. Tur, and M. Gonzalez-Herraez, J. Lightwave Technol. 37, 4888 (2019).
    [Crossref]
  17. A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, Opt. Lett. 33, 2284 (2008).
    [Crossref]
  18. M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, J. Lightwave Technol. 36, 979 (2018).
    [Crossref]
  19. J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, J. Lightwave Technol. 35, 4677 (2017).
    [Crossref]
  20. L. Palmieri, J. Lightwave Technol. 24, 4075 (2006).
    [Crossref]
  21. A. Galtarossa and L. Palmieri, Proc. SPIE 10323, 207 (2017).
    [Crossref]

2019 (2)

2018 (1)

2017 (3)

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, J. Lightwave Technol. 35, 4677 (2017).
[Crossref]

A. Galtarossa and L. Palmieri, Proc. SPIE 10323, 207 (2017).
[Crossref]

M. A. Soto, A. Denisov, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, Proc. SPIE. 10323, 103238Z (2017).
[Crossref]

2016 (1)

2015 (1)

2012 (2)

2010 (1)

2009 (1)

2008 (1)

2006 (2)

2004 (1)

2002 (1)

M. Wegmuller, M. Legré, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[Crossref]

1982 (1)

1981 (2)

I. P. Kaminow, IEEE J. Quantum Electron. 17, 15 (1981).
[Crossref]

A. J. Rogers, Appl. Opt. 20, 1060 (1981).
[Crossref]

Angulo-Vinuesa, X.

M. A. Soto, A. Denisov, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, Proc. SPIE. 10323, 103238Z (2017).
[Crossref]

Bao, X.

Bhatta, H. D.

Chen, L.

Costa, L.

Denisov, A.

M. A. Soto, A. Denisov, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, Proc. SPIE. 10323, 103238Z (2017).
[Crossref]

Dong, Y.

Y. Dong, L. Teng, H. Zhang, T. Jiang, and D. Zhou, Characterization of Distributed Birefringence in Optical Fibers (Springer, 2018), pp. 1–31.

Fernandez-Ruiz, M. R.

Fernández-Ruiz, M. R.

Froggatt, M. E.

Galtarossa, A.

Garcia-Ruiz, A.

Geisler, T.

Gifford, D. K.

Gisin, N.

M. Wegmuller, M. Legré, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[Crossref]

Gonzalez-Herraez, M.

González-Herráez, M.

Grosso, D.

Hogari, K.

Imahama, M.

Jiang, T.

Y. Dong, L. Teng, H. Zhang, T. Jiang, and D. Zhou, Characterization of Distributed Birefringence in Optical Fibers (Springer, 2018), pp. 1–31.

Kaminow, I. P.

I. P. Kaminow, IEEE J. Quantum Electron. 17, 15 (1981).
[Crossref]

Koyamada, Y.

Kreger, S.

Kubota, K.

Legré, M.

M. Wegmuller, M. Legré, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[Crossref]

Lu, X.

Lu, Y.

Martin-Lopez, S.

Martín-López, S.

Martins, H. F.

Nuño, J.

Palmieri, L.

Pang, M.

Pastor-Graells, J.

Rogers, A. J.

Ross, J. N.

Schenato, L.

Soller, B. J.

Soto, M. A.

M. A. Soto, A. Denisov, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, Proc. SPIE. 10323, 103238Z (2017).
[Crossref]

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, Opt. Express 23, 24923 (2015).
[Crossref]

Teng, L.

Y. Dong, L. Teng, H. Zhang, T. Jiang, and D. Zhou, Characterization of Distributed Birefringence in Optical Fibers (Springer, 2018), pp. 1–31.

Thévenaz, L.

M. A. Soto, A. Denisov, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, Proc. SPIE. 10323, 103238Z (2017).
[Crossref]

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, Opt. Express 23, 24923 (2015).
[Crossref]

Tur, M.

Wegmuller, M.

M. Wegmuller, M. Legré, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[Crossref]

Wolfe, M.

Xie, S.

Zhang, H.

Y. Dong, L. Teng, H. Zhang, T. Jiang, and D. Zhou, Characterization of Distributed Birefringence in Optical Fibers (Springer, 2018), pp. 1–31.

Zhou, D.

Y. Dong, L. Teng, H. Zhang, T. Jiang, and D. Zhou, Characterization of Distributed Birefringence in Optical Fibers (Springer, 2018), pp. 1–31.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

I. P. Kaminow, IEEE J. Quantum Electron. 17, 15 (1981).
[Crossref]

J. Lightwave Technol. (9)

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

A. Galtarossa and L. Palmieri, Proc. SPIE 10323, 207 (2017).
[Crossref]

Proc. SPIE. (1)

M. A. Soto, A. Denisov, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, Proc. SPIE. 10323, 103238Z (2017).
[Crossref]

Other (1)

Y. Dong, L. Teng, H. Zhang, T. Jiang, and D. Zhou, Characterization of Distributed Birefringence in Optical Fibers (Springer, 2018), pp. 1–31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematics of the optical setup. LD, laser driver; MOD, amplitude modulator; POL SYN, polarization synthesizer; FILTER, tunable filter; BIAS, bias controller; AWG, arbitrary waveform generator; DG, delay generator; EDFA, erbium-doped fiber amplifier; DWDM, dense wavelength division multiplexer; FUT, fiber under test; DAQ, oscilloscope.
Fig. 2.
Fig. 2. Example acquisition for a given position in the fiber. The values of $ \delta $ required in Eq. (11) are obtained as the perceived index difference between each orthogonal pair ( $ \hat S, - \hat S $ ). The numbers in the figure represent the $ \hat S $ vector of light at the input for that given time section.
Fig. 3.
Fig. 3. Birefringence profile obtained from both ends for the 10 km fiber. Spatial resolution of 25 m.
Fig. 4.
Fig. 4. Birefringence profile obtained from both ends of (a)  $4\,\, {\rm km} + 1 \,\, {\rm km}$ fiber concatenated; (b) 4 km fiber; (c) 1 km fiber. Spatial resolution of 25 m.

Tables (1)

Tables Icon

Table 1. Summarized Results a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ij s , f = 4 π L ij λ ( n ¯ ± B / 2 )
Δ ϕ i j s , f = 2 π L i j λ ( n ¯ ± B / 2 ) + 2 π L i j λ ( n ¯ B / 2 ) = 4 π L i j λ n ¯ ,
e ( t ) = ( v ^ 1 s ^ ) e 1 ( t ) v ^ 1 + ( v ^ 2 s ^ ) e 2 ( t ) v ^ 2 .
q ( t ) = | v ^ 1 s ^ | 2 p ( t τ ) + | v ^ 2 s ^ | 2 p ( t + τ ) ,
τ = ν 0 δ ν t p n ¯ ( B 2 ) ,
| v ^ i s ^ | 2 = 1 2 ( 1 ± V ^ S ^ ) = 1 2 ( 1 ± γ ) ,
q 1 ( t ) = 1 2 [ ( 1 + γ ) p ( t τ ) + ( 1 γ ) p ( t + τ ) ] , q 2 ( t ) = 1 2 [ ( 1 γ ) p ( t τ ) + ( 1 + γ ) p ( t + τ ) ] .
R 12 ( t ) = 1 4 [ 2 ( 1 γ 2 ) c ( t ) + ( 1 + γ ) 2 c ( t 2 τ ) + ( 1 γ ) 2 c ( t + 2 τ ) ] ,
δ = a r g m a x { R 12 ( t ) } .
δ 2 γ τ ,
δ 1 2 + δ 2 2 + δ 3 2 = 2 τ V ^ 1 2 + V ^ 2 2 + V ^ 3 2 = 2 τ ,

Metrics