Abstract

Under the government of Malus’s law, metasurfaces composed of anisotropic nanostructures acting as nano-polarizers have shown their precise optical manipulation of polarization profile of incident light at the nanoscale. The orientation degeneracy implied in Malus’s law provides a new design degree of freedom for polarization multiplexing, which can be employed to design amplitude-modulated multiplexing meta-devices. Herein, we experimentally demonstrate this concept by encoding two independent amplitude profiles into a single metasurface under different polarization controls, merely with a single-size nanostructure design approach. Hence, the multiplexing metasurface functions as two independent fork gratings to generate two vortex beams with different topological charges, and the two channels can be readily switched by rotating the metasurface sample around its optical axis from 0° to 45° or vice versa. The proposed metasurface for vortex beam generation enjoys advantages including high resolution, ultracompactness, dual-channel information capacity, and ultrasimple nanostructures, and it can be extended to a variety of practical applications in information multiplexing, orbital angular momentum (OAM) multiplexing communication, quantum information processing, etc.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription