Abstract

Intensity levels allowed by safety standards (ICNIRP or ANSI) limit the amount of light that can be used in a clinical setting to image highly scattering or absorptive tissues with optical coherence tomography (OCT). To achieve high-sensitivity imaging at low intensity levels, we adapt a detection scheme—which is used in quantum optics for providing information about spectral correlations of photons—into a standard spectral domain OCT system. This detection scheme is based on the concept of dispersive Fourier transformation, where a fiber introduces a wavelength-dependent time delay measured by a single-pixel detector, usually a high-speed photoreceiver. Here, we use a fast superconducting single-photon detector SSPD as a single-pixel detector and obtain images of a glass stack and a slice of onion at the intensity levels of the order of 10 pW. We also provide a formula for a depth-dependent sensitivity falloff in such a detection scheme, which can be treated as a temporal equivalent of diffraction-grating-based spectrometers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. De Boer, R. Leitgeb, and M. Wojtkowski, Biomed. Opt. Express 8, 3248 (2017).
    [Crossref]
  2. P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
    [Crossref]
  3. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, Opt. Express 13, 3252 (2005).
    [Crossref]
  4. K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
    [Crossref]
  5. S. Moon and D. Y. Kim, Opt. Express 14, 11575 (2006).
    [Crossref]
  6. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, Opt. Express 20, 19612 (2012).
    [Crossref]
  7. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, Opt. Lett. 34, 2873 (2009).
    [Crossref]
  8. A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, Opt. Lett. 43, 6085 (2018).
    [Crossref]
  9. M. Szkulmowski, S. Tamborski, and M. Wojtkowski, Biomed. Opt. Express 7, 5042 (2016).
    [Crossref]
  10. Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. 46, 8499 (2007).
    [Crossref]
  11. A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, Biomed. Opt. Express 8, 902 (2017).
    [Crossref]
  12. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
    [Crossref]
  13. L. Zhang, L. Chen, Z. Lei, Y. Duan, C. Zhang, and X. Zhang, Opt. Lett. 44, 4135 (2019).
    [Crossref]
  14. Z. Hu and A. M. Rollins, in Optical Coherence Tomography (Springer, 2008), pp. 379–404.
  15. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, Opt. Express 15, 7634 (2007).
    [Crossref]
  16. C. O. da Costa-Luis and A. J. Reader, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2017), pp. 1–3.
  17. K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, Biomed. Opt. Express 9, 6205 (2018).
    [Crossref]
  18. F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
    [Crossref]

2019 (2)

L. Zhang, L. Chen, Z. Lei, Y. Duan, C. Zhang, and X. Zhang, Opt. Lett. 44, 4135 (2019).
[Crossref]

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

2018 (2)

2017 (2)

2016 (1)

2013 (1)

K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
[Crossref]

2012 (1)

2011 (1)

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

2009 (2)

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, Opt. Lett. 34, 2873 (2009).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

Agrawal, A.

Antony, B. J.

Avenhaus, M.

Cai, N.

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Chavez-Pirson, A.

Chen, L.

Chen, X.

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Chen, Y.

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Chen, Z.

da Costa-Luis, C. O.

C. O. da Costa-Luis and A. J. Reader, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2017), pp. 1–3.

De Boer, J. F.

Divochiy, A.

Drexler, W.

Duan, Y.

Eckstein, A.

Fard, A.

Fu, G.

Garnavi, R.

Goda, K.

K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
[Crossref]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, Opt. Express 20, 19612 (2012).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[Crossref]

Gu, Y.

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Guo, S.

Hahn, P.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

Halupka, K. J.

Hermann, B.

Hu, D.

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Hu, Z.

Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. 46, 8499 (2007).
[Crossref]

Z. Hu and A. M. Rollins, in Optical Coherence Tomography (Springer, 2008), pp. 379–404.

Ishikawa, H.

Izatt, J. A.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

Jalali, B.

K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
[Crossref]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, Opt. Express 20, 19612 (2012).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[Crossref]

Kim, D. Y.

Kolenderski, P.

Lee, M. H.

Lei, Z.

Leitgeb, R.

Lucy, K. A.

Ma, Y.

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Maldonado, R. S.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

Malik, O.

Migacz, J.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

Misiaszek, M.

Moon, S.

Morozov, P.

Mosley, P. J.

Nehmetallah, G.

O’Connell, R.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

Pan, Y.

Pfefer, T. J.

Považay, B.

Quach, A.

Rai, R. S.

Rao, B.

Reader, A. J.

C. O. da Costa-Luis and A. J. Reader, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2017), pp. 1–3.

Rollins, A. M.

Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. 46, 8499 (2007).
[Crossref]

Z. Hu and A. M. Rollins, in Optical Coherence Tomography (Springer, 2008), pp. 379–404.

Sattmann, H.

Schuman, J. S.

Shi, F.

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Silberhorn, C.

Smirnov, K.

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[Crossref]

Su, J.

Szkulmowski, M.

Tamborski, S.

Tomlins, P. H.

Toth, C. A.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

Tsia, K. K.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[Crossref]

Unterhuber, A.

Vakhtomin, Y.

Wang, Q.

Wojtkowski, M.

Wollstein, G.

Woolliams, P. D.

Yu, L.

Zhang, C.

Zhang, J.

Zhang, L.

Zhang, X.

Zolotov, P.

Appl. Opt. (1)

Biomed. Opt. Express (4)

Nat. Photonics (1)

K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
[Crossref]

Ophthalmic Surg. Lasers Imaging Retina (1)

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, Ophthalmic Surg. Lasers Imaging Retina 42, S85 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Med. Biol. (1)

F. Shi, N. Cai, Y. Gu, D. Hu, Y. Ma, Y. Chen, and X. Chen, Phys. Med. Biol. 64, 175010 (2019).
[Crossref]

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[Crossref]

Other (2)

Z. Hu and A. M. Rollins, in Optical Coherence Tomography (Springer, 2008), pp. 379–404.

C. O. da Costa-Luis and A. J. Reader, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2017), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup. The light source is a pulsed laser attenuated to a level of single photon per pulse. Pulses are coupled to a fiber (FB1) and propagate in a Linnik–Michelson interferometer. The input wave packet (pulse) is then split at a beam splitter (BS) into two arms. In the object arm, one wave packet interacts with the object and acquires an additional phase; in the reference arm, the other one is reflected from the mirror. They both overlap at the beam splitter, and the output is coupled to a single-mode fiber spool using a fiber coupler FB2. The time-resolving superconducting single-photon detector (SSPD) together with the long dispersive fiber spool work as a spectrometer. Time reference is provided by a photodiode signal from the light source. The data are collected using an FPGA time-stamping electronics. F1 and F2, lenses.
Fig. 2.
Fig. 2. (a) Spectrum of the pulsed laser measured by an optical spectrum analyzer. (b) and (c) Interference spectra at the optical path difference (OPD) of 0.155 mm and 1.04 mm show the decrease in fringe visibility similar to the one observed for traditional spectrometers [10]. (d) Intensity of the spectra FFT for a mirror as an object for different OPDs of the interferometer. The 6 dB falloff occurs at 0.92 mm, and the axial resolution drops by 1.4 µm—from 16.5 µm to 17.9 µm—on a distance of 1.1 mm.
Fig. 3.
Fig. 3. Theoretical and experimental falloffs calculated for two lengths of a SMF28E fiber: 3.5 km and 5 km. The STD of the jitter, $\Delta t$ , in the calculations is 35 ps. The temporal equivalent of spectral resolution of the fiber, $\delta\! T$ , was calculated to be 32 ps for the 3.5-km-long fiber and 38 ps for the 5-km-long fiber. The falloff, F, was calculated as 10 log(F), where F is normalized.
Fig. 4.
Fig. 4. Image of a stack of glass: quartz (only on the right), air gap, sapphire and an air gap between sapphire and BK7. (a) A B-scan showing an increased sensitivity in detecting interference between photons reflected from every surface of the object. (b) The same B-scan where the additional peaks were removed numerically. Layers way below the 6 dB falloff distance are still visible.
Fig. 5.
Fig. 5. Image of an onion slice. An average of 10 B-scans acquired at the intensity level of approximately 10 pW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F gr ( z ) = Δ x R e a 2 R 2 z 2 4 ln 2 sin Δ x R z Δ x R z ,
F t e m p ( z ) = Δ t R t e δ T 2 R t 2 z 2 4 ln 2 sin Δ t R t z Δ t R t z ,
I ( t j ) = 0 [ E r f ( ( Δ t 2 t ( k ) + 2 t j ) ln 2 δ T ) + E r f ( ( Δ t + 2 t ( k ) 2 t j ) ln 2 δ T ) ] [ ρ r e f ( k ) + ρ s a m ( k ) + 2 ρ r e f ( k ) ρ s a m ( k ) cos Δ ϕ ] d k ,

Metrics