Abstract

We demonstrate the generation of a low-noise, octave-spanning mid-infrared supercontinuum from 1700 to 4800 nm by injecting femtosecond pulses into the normal dispersion regime of a multimode step-index chalcogenide fiber with 100 µm core diameter. We conduct a systematic study of the intensity noise across the supercontinuum spectrum and show that the initial fluctuations of the pump laser are at most amplified by a factor of three. We also perform a comparison with the noise characteristics of an octave-spanning supercontinuum generated in the anomalous dispersion regime of a multimode fluoride fiber with similar core size and show that the normal dispersion supercontinuum in the multimode chalcogenide fiber has superior noise characteristics. Our results open up novel perspectives for many practical applications such as long-distance remote sensing where high power and low noise are paramount.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription