Abstract

Probabilistic constellation shaping (PCS) is utilized to approach the channel capacity limit in discrete multitone (DMT) transmission for underwater optical wireless communication (UOWC) system. A fixed quadrature amplitude modulation (QAM) format with various probabilistic distributions is individually allocated for different subcarriers to obtain achievable maximum channel capacity in accordance with the pre-estimated signal-to-noise ratio. By using a 450-nm directly modulated laser diode (LD) with an available modulation bandwidth of 2.75GHz, DMT with PCS technique is experimentally realized with a net data rate of 18.09 Gbit/s over 5 m, 17.21 Gbit/s over 25 m, and 12.62 Gbit/s over 35 m underwater transmission, giving substantial capacity improvement of 32.22%, 30.03%, and 27.55%, respectively, in comparison with the widely used regular QAM formats in DMT with bit-power loading scheme. The figure of merit of the UOWC system in terms of entropy, generalized mutual information (GMI), and normalized GMI are also presented. To the best of our knowledge, this is the first time to employ PCS-QAM-DMT in a UOWC system, and it is also the highest data rate ever reported for a single LD in UOWC.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation

Chenhui Xie, Zexin Chen, Songnian Fu, Wu Liu, Zhixue He, Lei Deng, Ming Tang, and Deming Liu
Opt. Express 26(1) 367-375 (2018)

Record high-speed short-range transmission over 1 mm core diameter POF employing DMT modulation

H. Yang, S. C. J. Lee, C. M. Okonkwo, S. T. Abraha, H. P. A. van den Boom, F. Breyer, S. Randel, A. M. J. Koonen, and E. Tangdiongga
Opt. Lett. 35(5) 730-732 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription