Abstract

In this Letter, we present a recipe for the generation of full Poincaré beams that contain all Stokes vortices (SVs), namely ϕ12, ϕ23, and ϕ31 vortices. Superposition of two scalar vortex beams with charges l1 and l2 (where |l1||l2|) in orthogonal states of polarization (SOP) generates all three types of SVs, out of which two types of them are generic and always lie in a ring, with the third type at the center of the ring with index value (l2l1). Thus, generation of hitherto unknown dark SVs is shown. The number of SVs in a ring is 4|l2l1|. Index sign inversion for all SVs can be achieved by swapping l1 and l2. By changing the orthogonal pairs of SOPs of the interfering beams, the SV at the center of the ring can be changed from one to another type such that the other two types take part in the formation of the ring of generic SVs. We have also deduced the expressions for the location of all the SVs in the beam. Experimental results are presented.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full Poincaré beams

Amber M. Beckley, Thomas G. Brown, and Miguel A. Alonso
Opt. Express 18(10) 10777-10785 (2010)

Poincaré vortices

Isaac Freund
Opt. Lett. 26(24) 1996-1998 (2001)

Characterization and manipulation of full Poincaré beams on the hybrid Poincaré sphere

Xiaohui Ling, Xunong Yi, Zhiping Dai, Youwen Wang, and Liezun Chen
J. Opt. Soc. Am. B 33(11) 2172-2176 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. V. Berry, J. Opt. A 6, 475 (2004).
    [Crossref]
  2. M. Dennis, Opt. Commun. 213, 201 (2002).
    [Crossref]
  3. I. Freund, Opt. Commun. 201, 251 (2002).
    [Crossref]
  4. P. Senthilkumaran, in Singularities in Physics and Engineering (IOP Publishing, 2018), pp. 2053–2563.
  5. J. V. Hajnal and J. F. Nye, Proc. R. Soc. London Ser. A 414, 433 (1987).
    [Crossref]
  6. B. S. B. Ram and P. Senthilkumaran, Opt. Lett. 43, 1830 (2018).
    [Crossref]
  7. P. Lochab, P. Senthilkumaran, and K. Khare, Opt. Express 25, 17524 (2017).
    [Crossref]
  8. C. T. Samlan, R. R. Suna, D. N. Naik, and N. K. Viswanathan, Appl. Phys. Lett. 112, 031101 (2018).
    [Crossref]
  9. P. Lochab, P. Senthilkumaran, and K. Khare, Phys. Rev. A 98, 023831 (2018).
    [Crossref]
  10. B. S. B. Ram, P. Senthilkumaran, and A. Sharma, Appl. Opt. 56, 3171 (2017).
    [Crossref]
  11. A. M. Beckley, T. G. Brown, and M. A. Alonso, Opt. Express 18, 10777 (2010).
    [Crossref]
  12. I. Freund, Opt. Lett. 26, 1996 (2001).
    [Crossref]
  13. I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, Opt. Lett. 27, 545 (2002).
    [Crossref]
  14. S. K. Pal and P. Senthilkumaran, OSA Continuum 1, 193 (2018).
    [Crossref]
  15. S. K. Pal and P. Senthilkumaran, Opt. Lett. 44, 130 (2019).
    [Crossref]
  16. L. Zhang, X. Qiu, F. Li, H. Liu, X. Chen, and L. Chen, Opt. Express 26, 11678 (2018).
    [Crossref]
  17. W. A. Woźniak, P. Kurzynowski, and A. Popiołek-Masajada, Opt. Commun. 441, 155 (2019).
    [Crossref]
  18. A. I. Mokhun, M. S. Soskin, and I. Freund, Opt. Lett. 27, 995 (2002).
    [Crossref]
  19. S. K. Pal and P. Senthilkumaran, Opt. Lett. 43, 1259 (2018).
    [Crossref]
  20. Ruchi, B. S. B. Ram, and P. Senthilkumaran, Opt. Lett. 42, 4159 (2017).
    [Crossref]
  21. M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
    [Crossref]
  22. S. K. Pal, Ruchi, and P. Senthilkumaran, Appl. Opt. 56, 6181(2017).
    [Crossref]

2019 (2)

W. A. Woźniak, P. Kurzynowski, and A. Popiołek-Masajada, Opt. Commun. 441, 155 (2019).
[Crossref]

S. K. Pal and P. Senthilkumaran, Opt. Lett. 44, 130 (2019).
[Crossref]

2018 (6)

2017 (4)

2015 (1)

M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
[Crossref]

2010 (1)

2004 (1)

M. V. Berry, J. Opt. A 6, 475 (2004).
[Crossref]

2002 (4)

2001 (1)

1987 (1)

J. V. Hajnal and J. F. Nye, Proc. R. Soc. London Ser. A 414, 433 (1987).
[Crossref]

Alonso, M. A.

Angelsky, O. V.

Beckley, A. M.

Berry, M. V.

M. V. Berry, J. Opt. A 6, 475 (2004).
[Crossref]

Boyd, R. W.

M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
[Crossref]

Brown, T. G.

Chen, L.

Chen, X.

Dennis, M.

M. Dennis, Opt. Commun. 213, 201 (2002).
[Crossref]

Freund, I.

Hajnal, J. V.

J. V. Hajnal and J. F. Nye, Proc. R. Soc. London Ser. A 414, 433 (1987).
[Crossref]

Khare, K.

P. Lochab, P. Senthilkumaran, and K. Khare, Phys. Rev. A 98, 023831 (2018).
[Crossref]

P. Lochab, P. Senthilkumaran, and K. Khare, Opt. Express 25, 17524 (2017).
[Crossref]

Kurzynowski, P.

W. A. Woźniak, P. Kurzynowski, and A. Popiołek-Masajada, Opt. Commun. 441, 155 (2019).
[Crossref]

Lavery, M. P. J.

M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
[Crossref]

Li, F.

Liu, H.

Lochab, P.

P. Lochab, P. Senthilkumaran, and K. Khare, Phys. Rev. A 98, 023831 (2018).
[Crossref]

P. Lochab, P. Senthilkumaran, and K. Khare, Opt. Express 25, 17524 (2017).
[Crossref]

Miatto, F. M.

M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
[Crossref]

Mokhun, A. I.

Mokhun, I. I.

Naik, D. N.

C. T. Samlan, R. R. Suna, D. N. Naik, and N. K. Viswanathan, Appl. Phys. Lett. 112, 031101 (2018).
[Crossref]

Nye, J. F.

J. V. Hajnal and J. F. Nye, Proc. R. Soc. London Ser. A 414, 433 (1987).
[Crossref]

Padgett, M. J.

M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
[Crossref]

Pal, S. K.

Popiolek-Masajada, A.

W. A. Woźniak, P. Kurzynowski, and A. Popiołek-Masajada, Opt. Commun. 441, 155 (2019).
[Crossref]

Qiu, X.

Ram, B. S. B.

Ruchi,

Samlan, C. T.

C. T. Samlan, R. R. Suna, D. N. Naik, and N. K. Viswanathan, Appl. Phys. Lett. 112, 031101 (2018).
[Crossref]

Senthilkumaran, P.

Sharma, A.

Soskin, M. S.

Suna, R. R.

C. T. Samlan, R. R. Suna, D. N. Naik, and N. K. Viswanathan, Appl. Phys. Lett. 112, 031101 (2018).
[Crossref]

Viswanathan, N. K.

C. T. Samlan, R. R. Suna, D. N. Naik, and N. K. Viswanathan, Appl. Phys. Lett. 112, 031101 (2018).
[Crossref]

Wozniak, W. A.

W. A. Woźniak, P. Kurzynowski, and A. Popiołek-Masajada, Opt. Commun. 441, 155 (2019).
[Crossref]

Zeilinger, A.

M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
[Crossref]

Zhang, L.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. T. Samlan, R. R. Suna, D. N. Naik, and N. K. Viswanathan, Appl. Phys. Lett. 112, 031101 (2018).
[Crossref]

J. Opt. A (1)

M. V. Berry, J. Opt. A 6, 475 (2004).
[Crossref]

New J. Phys. (1)

M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, New J. Phys. 17, 023011 (2015).
[Crossref]

Opt. Commun. (3)

M. Dennis, Opt. Commun. 213, 201 (2002).
[Crossref]

I. Freund, Opt. Commun. 201, 251 (2002).
[Crossref]

W. A. Woźniak, P. Kurzynowski, and A. Popiołek-Masajada, Opt. Commun. 441, 155 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

OSA Continuum (1)

Phys. Rev. A (1)

P. Lochab, P. Senthilkumaran, and K. Khare, Phys. Rev. A 98, 023831 (2018).
[Crossref]

Proc. R. Soc. London Ser. A (1)

J. V. Hajnal and J. F. Nye, Proc. R. Soc. London Ser. A 414, 433 (1987).
[Crossref]

Other (1)

P. Senthilkumaran, in Singularities in Physics and Engineering (IOP Publishing, 2018), pp. 2053–2563.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Simulation, superposition of vortices of charges l1=0 and l2=3 in S1±, S2±, and S3± basis respectively. (a) Resultant SOP distribution; (b) zero contours of S1, S2, and S3; and (c)–(e) Stokes phases ϕ12, ϕ23, and ϕ31. Insets, intensities.
Fig. 2.
Fig. 2. Simulation, SOP distributions due to interference of two vortex beams with charges l1 and l2 respectively, (a)–(d) in S1± basis and (e)–(f) in S3± basis. Below each SOP distributions, Stokes phases ϕ12, ϕ23, and ϕ31 are shown. Insets, intensities.
Fig. 3.
Fig. 3. Simulation, distribution of SOPs on the Poincaré sphere for beams with different Stokes indices and combination of l1 and l2. Percentage of area occupied by beams on the Poincaré sphere are (a) 60%, (b) 76.5%, (c) 87.7%, and (d) 76.5%.
Fig. 4.
Fig. 4. Experimental setup: P, polarizer; SF, spatial filter assembly; L1 and L2, lenses; PBS, polarizing beam splitter; M1 and M2, mirrors; SPP1,SPP2, spiral phase plates; HWP (QWP), half (quarter) wave plate; BD, beam dump; SC, Stokes camera.
Fig. 5.
Fig. 5. Experimentally obtained Stokes vortices (a) ϕ12, (b) ϕ23, and (c) ϕ31, and (d) SOP distribution due to superposition of vortex beams of charges l1=0 and l2=4 in S1±.
Fig. 6.
Fig. 6. Experimental results for interference of vortex beams with charges l1 and l2 in S3± basis; a1,2; b1,2; and c1,2 show Stokes phases ϕ12, ϕ23, and ϕ31 d1 and d2 show polarization distribution of resultant beam. Insets, intensities.
Fig. 7.
Fig. 7. Experimental results for interference of vortex beams with charges l1 and l2 in S3± basis; b1,2; c1,2; and d1,2 show Stokes phases ϕ12,ϕ23, and ϕ31. (a1) and (a2) show polarization distribution of resultant beam consisting of dark C points with Stokes index σ12=5 and σ12=5, respectively. Insets, intensities.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ex=r|l1|exp(il1ϕ)exp(r2w2),
Ey=r|l2|exp(il2ϕ)exp(r2w2),
y=xtan((2n+1)π2(l2l1))andx2+y2=1.
y=xtan(nπ(l2l1))andx2+y2=1.