Abstract

The pulse-energy scaling technique electro-optically controlled divided-pulse amplification is implemented in a high-power ultrafast fiber laser system based on coherent beam combination. A fiber-integrated front end and a multipass-cell-based back end allow for a small footprint and a modular implementation. Bursts of eight pulses are amplified parallel in up to 12 ytterbium-doped large-pitch fiber amplifiers. Subsequent spatiotemporal coherent combination of the 96 total amplified pulse replicas to a single pulse results in a pulse energy of 23 mJ at an average power of 674 W, compressible to a pulse duration of 235 fs. To the best of our knowledge, this is the highest pulse energy ever accomplished with a fiber chirped-pulse amplification (CPA) system.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optically controlled divided-pulse amplification

Henning Stark, Michael Müller, Marco Kienel, Arno Klenke, Jens Limpert, and Andreas Tünnermann
Opt. Express 25(12) 13494-13503 (2017)

12  mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition

Marco Kienel, Michael Müller, Arno Klenke, Jens Limpert, and Andreas Tünnermann
Opt. Lett. 41(14) 3343-3346 (2016)

Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification

Marco Kienel, Arno Klenke, Tino Eidam, Steffen Hädrich, Jens Limpert, and Andreas Tünnermann
Opt. Lett. 39(4) 1049-1052 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
    [Crossref]
  2. F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, Optica 1, 233 (2014).
    [Crossref]
  3. D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
    [Crossref]
  4. M. Müller, A. Klenke, A. Steinkopff, H. Stark, A. Tünnermann, and J. Limpert, Opt. Lett. 43, 6037 (2018).
    [Crossref]
  5. T. Zhou, J. Ruppe, C. Zhu, I.-N. Hu, J. Nees, and A. Galvanauskas, Opt. Express 23, 7442 (2015).
    [Crossref]
  6. S. Zhou, D. G. Ouzounov, and F. W. Wise, Opt. Lett. 32, 871 (2007).
    [Crossref]
  7. M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, Opt. Lett. 41, 3343 (2016).
    [Crossref]
  8. H. Stark, M. Müller, M. Kienel, A. Klenke, J. Limpert, and A. Tünnermann, Opt. Express 25, 13494 (2017).
    [Crossref]
  9. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, Opt. Lett. 41, 3439 (2016).
    [Crossref]
  10. M. Müller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, Proc. SPIE 10512, 1051208 (2018).
    [Crossref]
  11. V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
    [Crossref]
  12. T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [Crossref]
  13. D. R. Herriott and H. J. Schulte, Appl. Opt. 4, 883 (1965).
    [Crossref]
  14. T. M. Shay, Opt. Express 14, 12188 (2006).
    [Crossref]
  15. M. Mueller, M. Kienel, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann, Opt. Express 24, 7893 (2016).
    [Crossref]

2018 (2)

M. Müller, A. Klenke, A. Steinkopff, H. Stark, A. Tünnermann, and J. Limpert, Opt. Lett. 43, 6037 (2018).
[Crossref]

M. Müller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, Proc. SPIE 10512, 1051208 (2018).
[Crossref]

2017 (1)

2016 (3)

2015 (1)

2014 (1)

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[Crossref]

2007 (1)

2006 (1)

2004 (1)

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

1980 (1)

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[Crossref]

1965 (1)

Buldt, J.

M. Müller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, Proc. SPIE 10512, 1051208 (2018).
[Crossref]

Couillaud, B.

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[Crossref]

Dantus, M.

Eidam, T.

Galvanauskas, A.

Gottschall, T.

M. Müller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, Proc. SPIE 10512, 1051208 (2018).
[Crossref]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, Opt. Lett. 41, 3439 (2016).
[Crossref]

Hansch, T. W.

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[Crossref]

Herriott, D. R.

Hu, I.-N.

Jansen, F.

Jauregui, C.

Kienel, M.

Klenke, A.

Limpert, J.

Lozovoy, V. V.

Mourou, G.

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

Mueller, M.

Müller, M.

Nees, J.

Otto, H.-J.

Ouzounov, D. G.

Pastirk, I.

Plötner, M.

Ruppe, J.

Schulte, H. J.

Shay, T. M.

Shestaev, E.

Stark, H.

Steinkopff, A.

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

Stutzki, F.

Tünnermann, A.

Wise, F. W.

Zhou, S.

Zhou, T.

Zhu, C.

Appl. Opt. (1)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[Crossref]

Opt. Commun. (2)

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Optica (1)

Proc. SPIE (1)

M. Müller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, Proc. SPIE 10512, 1051208 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Simplified setup for spatiotemporal combination of 12 parallel main amplifiers and eight temporal pulse replicas. AOM, acousto-optic modulator; EOM, electro-optic modulator; PBS, polarizing beam splitter; TFP, thin-film polarizer; HWP, half-wave plate; PM, piezo-mounted mirror; DL, delay line; ROC, radius of curvature of MPC mirrors; d, MPC mirror distance.
Fig. 2.
Fig. 2. Photodiode trace of the combined signal from two amplifiers at a burst repetition rate of f burst = 500 kHz .
Fig. 3.
Fig. 3. Matched autocorrelation traces of the individual pulses of the amplified burst after amplitude preshaping.
Fig. 4.
Fig. 4. Seed signal burst after amplitude preshaping at f burst = 25 kHz measured with a slower photodiode.
Fig. 5.
Fig. 5. Burst after main amplification at f burst = 25 kHz normalized to the corresponding estimated single-pulse damage threshold of an amplifier at about 1 mJ, indicated by a red line.
Fig. 6.
Fig. 6. Photodiode trace of the spatiotemporally combined signal from 12 main amplifiers with 23 mJ in the main feature.
Fig. 7.
Fig. 7. (a) Autocorrelation trace of the combined pulse sample after compression. (b) Intensity profile of the combined beam.

Tables (1)

Tables Icon

Table 1. Summarized Results a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η stack = E main i E i = η comb η temp = 78 % ,
C = E main E pre = 21 dB .