Abstract

In this Letter, for the first time, to the best of our knowledge, we propose a digital holographic reconstruction method with a one-to-two deep learning framework (Y-Net). Perfectly fitting the holographic reconstruction process, the Y-Net can simultaneously reconstruct intensity and phase information from a single digital hologram. As a result, this compact network with reduced parameters brings higher performance than typical network variants. The experimental results of the mouse phagocytes demonstrate the advantages of the proposed Y-Net.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holographic particle volume reconstruction using a deep neural network

Tomoyoshi Shimobaba, Takayuki Takahashi, Yota Yamamoto, Yutaka Endo, Atsushi Shiraki, Takashi Nishitsuji, Naoto Hoshikawa, Takashi Kakue, and Tomoyosh Ito
Appl. Opt. 58(8) 1900-1906 (2019)

Focus prediction in digital holographic microscopy using deep convolutional neural networks

Tomi Pitkäaho, Aki Manninen, and Thomas J. Naughton
Appl. Opt. 58(5) A202-A208 (2019)

Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection

Thanh Nguyen, Vy Bui, Van Lam, Christopher B. Raub, Lin-Ching Chang, and George Nehmetallah
Opt. Express 25(13) 15043-15057 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription