Abstract

A new approach for achieving isotropic differential phase contrast imaging by applying multi-wavelength asymmetric illumination is demonstrated. Multi-wavelength isotropic differential phase contrast scheme (MW-iDPC) can be implemented using an add-on module in any commercial inverted microscope. Isotropy of intensity transfer function is achieved using three axis measurements. The expression for MW-iDPC imaging is presented, and detailed mathematical analysis is performed for transfer function. By applying color leakage correction, image sensor responses can be calibrated. Asymmetric illumination masks are designed, and simulation studies for intensity of the transfer function are performed. We utilize the MW-iDPC system to reconstruct quantitative phase images of standard microspheres and live breast cancer cells. The optical thickness of cells can be measured with high accuracy and image acquisition time is reduced significantly.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination

Yu-Zi Lin, Kuang-Yuh Huang, and Yuan Luo
Opt. Lett. 43(12) 2973-2976 (2018)

Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast

Shalin B. Mehta and Colin J. R. Sheppard
Opt. Lett. 34(13) 1924-1926 (2009)

Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy

Yao Fan, Jiasong Sun, Qian Chen, Xiangpeng Pan, Lei Tian, and Chao Zuo
Photon. Res. 7(8) 890-904 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription