Abstract

Conventional polarimetric imaging may perform poorly in photon-starved environments. In this Letter, we demonstrate the potential of integral imaging and dedicated algorithms for extracting three-dimensional (3D) polarimetric information in low light, and reducing the effects of measurement uncertainty. In our approach, the Stokes polarization parameters are measured and statistically analyzed in low illumination conditions through 3D-reconstructed polarimetric images with dedicated algorithms to improve the signal-to-noise ratio (SNR). The 3D volumetric degree of polarization (DoP) of the scene is calculated by statistical algorithms. We show that the 3D polarimetric information of the object can be statistically extracted from the Stokes parameters and 3D DoP images. Experimental results along with a novel statistical analysis verify the feasibility of the proposed approach for polarimetric 3D imaging in photon-starved environments and show that it outperforms its two-dimensional counterpart in terms of SNR. To the best of our knowledge, this is the first report of novel optical experiments along with novel statistical analysis and dedicated algorithms to recover 3D polarimetric imaging signatures in low light.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional object visualization and detection in low light illumination using integral imaging

Adam Markman, Xin Shen, and Bahram Javidi
Opt. Lett. 42(16) 3068-3071 (2017)

Polarimetric 3D integral imaging in photon-starved conditions

Artur Carnicer and Bahram Javidi
Opt. Express 23(5) 6408-6417 (2015)

Three-dimensional polarimetric computational integral imaging

Xiao Xiao, Bahram Javidi, Genaro Saavedra, Michael Eismann, and Manuel Martinez-Corral
Opt. Express 20(14) 15481-15488 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription