Abstract

Chip-based soliton frequency combs have been demonstrated on various material platforms, offering broadband, mutually coherent, and equally spaced frequency lines desired for many applications. Lithium niobate (LN), possessing both second- and third-order optical nonlinearities, as well as integrability on insulating substrates, has emerged as a novel source for microcomb generation and controlling. Here we demonstrate mode-locked soliton microcombs generated around 2 μm in a high-Q z-cut LN microring resonator. The intracavity photorefractive effect is found to be still dominant over the thermal effect in the 2 μm region, which facilitates direct accessing soliton states in the red-detuned regime, as reported in the telecom band. We also find that intracavity stimulated Raman scattering is greatly suppressed when moving the pump wavelength from the telecom band to 2 μm, thus alleviating Raman–Kerr comb competition. This Letter expands mode-locked LN microcombs to 2 μm, and could enable a variety of potential applications based on LN nanophotonic platform.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion engineered high quality lithium niobate microring resonators

Yang He, Hanxiao Liang, Rui Luo, Mingxiao Li, and Qiang Lin
Opt. Express 26(13) 16315-16322 (2018)

High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators

Zheng Gong, Alexander Bruch, Mohan Shen, Xiang Guo, Hojoong Jung, Linran Fan, Xianwen Liu, Liang Zhang, Junxi Wang, Jinmin Li, Jianchang Yan, and Hong X. Tang
Opt. Lett. 43(18) 4366-4369 (2018)

Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes

Séverine Diziain, Reinhard Geiss, Michael Steinert, Carsten Schmidt, Wei-Kun Chang, Stefan Fasold, Daniel Füßel, Yen-Hung Chen, and Thomas Pertsch
Opt. Mater. Express 5(9) 2081-2089 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, Optica 1, 10 (2014).
    [Crossref]
  2. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, Science 361, eaan8083 (2018).
    [Crossref]
  3. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
    [Crossref]
  4. S. Coen and M. Erkintalo, Opt. Lett. 38, 1790 (2013).
    [Crossref]
  5. V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, and T. J. Kippenberg, Opt. Express 24, 29312 (2016).
    [Crossref]
  6. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
    [Crossref]
  7. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
    [Crossref]
  8. C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, Opt. Lett. 41, 2565(2016).
    [Crossref]
  9. P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, Opt. Express 24, 10890(2016).
    [Crossref]
  10. Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, Optica 4, 193 (2017).
    [Crossref]
  11. C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, D. E. Leaird, M. Qi, and A. M. Weiner, Opt. Lett. 42, 2519 (2017).
    [Crossref]
  12. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, Optica 3, 854 (2016).
    [Crossref]
  13. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, Nat. Photonics 11, 671 (2017).
    [Crossref]
  14. Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, and H. X. Tang, Opt. Lett. 43, 4366(2018).
    [Crossref]
  15. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photonics Rev. 12, 1700256 (2018).
    [Crossref]
  16. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, Optica 4, 1536 (2017).
    [Crossref]
  17. Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, Opt. Express 26, 16315 (2018).
    [Crossref]
  18. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Optica 5, 1006 (2018).
    [Crossref]
  19. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, Optica 5, 1438 (2018).
    [Crossref]
  20. S. J. Herr, V. Brasch, J. Szabados, E. Obrzud, Y. Jia, S. Lecomte, K. Buse, I. Breunig, and T. Herr, Opt. Lett. 43, 5745 (2018).
    [Crossref]
  21. J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, Opt. Lett. 44, 1492 (2019).
    [Crossref]
  22. M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, Opt. Lett. 44, 1222 (2019).
    [Crossref]
  23. C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, Nat. Commun. 10, 978 (2019).
    [Crossref]
  24. Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).
  25. A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
    [Crossref]
  26. Y. Okawachi, M. Yu, V. Venkataraman, P. M. Latawiec, A. G. Griffith, M. Lipson, M. Lončar, and A. L. Gaeta, Opt. Lett. 42, 2786 (2017).
    [Crossref]
  27. X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
    [Crossref]
  28. X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, Opt. Express 25, 13504 (2017).
    [Crossref]
  29. X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, Opt. Lett. 41, 2037 (2016).
    [Crossref]
  30. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys. Condens. Matter 9, 9687 (1997).
    [Crossref]
  31. K. Rottwitt, J. Bromage, A. J. Stentz, M. E. Lines, and H. Smith, J. Lightwave Technol. 21, 1652 (2003).
    [Crossref]

2019 (3)

2018 (8)

2017 (7)

2016 (6)

2014 (2)

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, Optica 1, 10 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

2013 (1)

2012 (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

2003 (1)

1997 (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys. Condens. Matter 9, 9687 (1997).
[Crossref]

Bao, C.

Beha, K.

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photonics Rev. 12, 1700256 (2018).
[Crossref]

Bourson, P.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys. Condens. Matter 9, 9687 (1997).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photonics Rev. 12, 1700256 (2018).
[Crossref]

Brasch, V.

S. J. Herr, V. Brasch, J. Szabados, E. Obrzud, Y. Jia, S. Lecomte, K. Buse, I. Breunig, and T. Herr, Opt. Lett. 43, 5745 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, and T. J. Kippenberg, Opt. Express 24, 29312 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Breunig, I.

Briles, T. C.

Bromage, J.

Bruch, A.

X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
[Crossref]

Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, and H. X. Tang, Opt. Lett. 43, 4366(2018).
[Crossref]

Buse, K.

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photonics Rev. 12, 1700256 (2018).
[Crossref]

Cheng, R.

Coen, S.

Cole, D. C.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, Nat. Photonics 11, 671 (2017).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photonics Rev. 12, 1700256 (2018).
[Crossref]

Del’Haye, P.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, Nat. Photonics 11, 671 (2017).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, Optica 1, 10 (2014).
[Crossref]

Desiatov, B.

Diddams, S. A.

Drake, T. E.

Erkintalo, M.

Fan, L.

Fejer, M. M.

Fontana, M. D.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys. Condens. Matter 9, 9687 (1997).
[Crossref]

Gaeta, A. L.

Geiselmann, M.

V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, and T. J. Kippenberg, Opt. Express 24, 29312 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

Gong, Z.

X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
[Crossref]

Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, and H. X. Tang, Opt. Lett. 43, 4366(2018).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, Science 361, eaan8083 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Griffith, A. G.

Guo, H.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

Guo, X.

X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
[Crossref]

Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, and H. X. Tang, Opt. Lett. 43, 4366(2018).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

He, Y.

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, Opt. Express 26, 16315 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Optica 5, 1006 (2018).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Herr, S. J.

Herr, T.

S. J. Herr, V. Brasch, J. Szabados, E. Obrzud, Y. Jia, S. Lecomte, K. Buse, I. Breunig, and T. Herr, Opt. Lett. 43, 5745 (2018).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Hu, H.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, Nat. Commun. 10, 978 (2019).
[Crossref]

Ilic, B. R.

Jang, J. K.

Jankowski, M.

Jaramillo-Villegas, J. A.

Ji, X.

Jia, Y.

Jiang, L.

X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
[Crossref]

Jiang, W. C.

Joshi, C.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Jung, H.

X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
[Crossref]

Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, and H. X. Tang, Opt. Lett. 43, 4366(2018).
[Crossref]

Karpov, M.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, Science 361, eaan8083 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, and T. J. Kippenberg, Opt. Express 24, 29312 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Klenner, A.

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Kordts, A.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

Lamb, E. S.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, Nat. Photonics 11, 671 (2017).
[Crossref]

Langrock, C.

Latawiec, P. M.

Leaird, D. E.

Lecomte, S.

Lee, H.

Li, J.

Li, M.

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, Opt. Express 26, 16315 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Optica 5, 1006 (2018).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Li, Q.

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Optica 5, 1006 (2018).
[Crossref]

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, Opt. Express 26, 16315 (2018).
[Crossref]

X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, Opt. Express 25, 13504 (2017).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Lihachev, G.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

Lin, Q.

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, Opt. Express 26, 16315 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Optica 5, 1006 (2018).
[Crossref]

X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, Opt. Express 25, 13504 (2017).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Lines, M. E.

Ling, J.

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Lipson, M.

Liu, X.

Lobanov, V. E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

Loncar, M.

Lu, J.

Lucas, E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

Luke, K.

Luo, R.

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, Opt. Express 26, 16315 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Optica 5, 1006 (2018).
[Crossref]

X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, Opt. Express 25, 13504 (2017).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Malovichko, G.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys. Condens. Matter 9, 9687 (1997).
[Crossref]

Marandi, A.

Miller, S. A.

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photonics Rev. 12, 1700256 (2018).
[Crossref]

Obrzud, E.

Okawachi, Y.

Papp, S. B.

Pfeiffer, M. H. P.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, and T. J. Kippenberg, Opt. Express 24, 29312 (2016).
[Crossref]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Qi, M.

Quinlan, F.

Ridah, A.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys. Condens. Matter 9, 9687 (1997).
[Crossref]

Rottwitt, K.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Shams-Ansari, A.

Shen, B.

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Shen, M.

Smith, H.

Srinivasan, K.

Stentz, A. J.

Stone, J. R.

Sun, X.

Surya, J. B.

Szabados, J.

Tang, H. X.

Vahala, K.

X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, Opt. Lett. 41, 2037 (2016).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Vahala, K. J.

Venkataraman, V.

Wang, C.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Wang, H.

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Wang, J.

Wang, P.-H.

Weiner, A. M.

Westly, D. A.

Xu, Y.

Xuan, Y.

Xue, X.

Yan, J.

Yang, K. Y.

Yang, Q.-F.

X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, Opt. Lett. 41, 2037 (2016).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Yi, X.

Yu, M.

Zhang, L.

Zhang, M.

Zhang, X.-C.

Zhu, R.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, Nat. Commun. 10, 978 (2019).
[Crossref]

Zou, C.-L.

X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Condens. Matter (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys. Condens. Matter 9, 9687 (1997).
[Crossref]

Laser Photonics Rev. (1)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Laser Photonics Rev. 12, 1700256 (2018).
[Crossref]

Nat. Commun. (1)

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, Nat. Commun. 10, 978 (2019).
[Crossref]

Nat. Photonics (3)

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, Nat. Photonics 11, 671 (2017).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2014).
[Crossref]

Nat. Phys. (1)

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

Optica (6)

Phys. Rev. Appl. (1)

X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).
[Crossref]

Science (2)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, Science 361, eaan8083 (2018).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).
[Crossref]

Other (1)

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO3 soliton microcomb,” arXiv:1812.09610 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Upper colorized scanning electron micrograph shows the top view of the LN microring, and the lower image shows the cleaved chip facet, revealing a 210nm thick un-etched LN layer and a 60° sidewall slope angle. (b) TE mode transmission of a LN microring whose geometry is schematically depicted in the inset of (d) with a radius of 100 μm and width (W) of 1.9 μm. Inset, simulated TE00 modal profile. (c) Zoom-in view of a selected resonance (black dots) in (b) fitted by a Fano function (red curve) to extract the quality factor. (d) Simulated integrated dispersion for the intracavity TE00 mode of different ring widths. Inset, microring cross-sectional dimension for modeling and simulation. (e) Simulated soliton spectrum for W=1.9μm in (d), with the on-chip input power of 100 mW. Due to the high-order dispersion, the soliton spectral profile becomes asymmetric around the pump with a 3 dB bandwidth of 73nm.
Fig. 2.
Fig. 2. (a) Illustration of the experiment setup. PC, personal computer used to control the laser and record the transmission. (b) Schematic of the scanning trace (blue solid line) of λc. The upper dashed gray line (I) indicates the wavelength of the cold cavity resonance, while the lower one (III) represents the farthest blueshifted resonance wavelength under the current pump power via the photorefractive effect. Here λc is first tuned into the resonance from its red-detuned side (blue shade region); then it is held in the 1st yellow region, scanned backward in the red shaded region and, eventually, held at the desired soliton state in the 2nd yellow region. The red dashed line (II) indicates the final resonance wavelength.
Fig. 3.
Fig. 3. (a) Normalized transmission versus the laser-cavity detuning fcf0, where f0 is the cold cavity resonance frequency. The gray/red curve is the transmission under the forward/backward laser scan indicated by the gray/red arrow. The dip of the blueshifted resonance under the forward scan is marked with a dashed circle. Inset, the cold cavity resonance (dashed black) and the blueshifted resonance (solid gray/red) under the forward/back scan against fcf0. (b) Normalized transmission (solid red), the MZI signal (solid blue) and the laser-cavity detuning fcf0 (dashed blue) versus the scan time. The laser scanning/holding operations are marked with different colors according to those in Fig. 2(b). Insets, zoom-in MZI signals during the laser scan. (c) Zoom-in transmission in the red regime of (b), where discrete stair-like steps are observed. The on-chip input optical power is 74mW for (a)–(c).
Fig. 4.
Fig. 4. (a) Normalized total transmission (solid black), MZI signal (solid blue), and laser-cavity detuning (dashed blue) while accessing the soliton comb in (c). In the red shaded region, the laser frequency tuning is switched from previous continuous scanning to “step mode” so as to achieve a slower speed, which requires a longer systematic holding time (80s). (b)–(d) Optical spectra of the MI comb and soliton combs, with intensity noise spectra shown in the right insets. The single soliton comb in (c) features a sech2-spectral profile with a 3 dB bandwidth of 57nm. The reconstructed soliton relative position is depicted in the left inset of (d). The on-chip power in (c, d) is 90mW for access to soliton combs. The microring cross-sectional dimensions are shown in the insets of Fig. 5, where the free-spectral ranges (FSRs) are 201 and 200GHz, respectively, at 2 μm. No SRSs are observed during the bidirectional scans across resonances.
Fig. 5.
Fig. 5. (a) Optical spectrum of Raman–Kerr combs generated in the same LN microring as that in Fig. 4(c). Here the pump wavelength is 1.55μm, and the Raman-active phonon modes are labelled according to the extracted frequency shifts relative to the pump. Inset, the schematic cross section of the LN microring. The dispersion is simulated to be 34ps/km/nm around the pump (FSR 202GHz), which also supports Kerr comb generation. (b) Optical spectrum of the Raman comb generated in the LN microring that is used in Fig. 4(d). The pump wavelength is set to 1.55μm (D54ps/km/nm, FSR 201GHz). No soliton comb is observed when scanning the pump across the resonance bidirectionally. In both cases (a,b), E(LO)8-induced SRS appears to be dominant.

Metrics