Abstract

We present a very simple method of constructing a polarization-sensitive optical coherence tomography (PS-OCT) system. An ordinary fiber-based swept-source OCT system was reconfigured for PS-OCT by adding a long section of polarization-maintaining fiber in the sample arm. Two polarization modes of a large group-delay difference formed spatially distinguished polarization channels. The depth-encoded information on the polarization states was retrieved by an amplitude-based analysis. We found that our method provides an economic scheme of PS-OCT. It demonstrates that an ordinary OCT system can be easily reconfigured for PS-OCT imaging if it has sufficient margins in the imaging range.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber

Muhammad K. Al-Qaisi and Taner Akkin
Opt. Express 18(4) 3392-3403 (2010)

Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography

Erich Götzinger, Bernhard Baumann, Michael Pircher, and Christoph K. Hitzenberger
Opt. Express 17(25) 22704-22717 (2009)

Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit

Bernhard Baumann, WooJhon Choi, Benjamin Potsaid, David Huang, Jay S. Duker, and James G. Fujimoto
Opt. Express 20(9) 10229-10241 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, Opt. Express 3, 212 (1998).
    [Crossref]
  2. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, IEEE J. Sel. Top. Quantum Electron. 5, 1200 (1999).
    [Crossref]
  3. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, Opt. Lett. 22, 934 (1997).
    [Crossref]
  4. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, Biomed. Opt. Express 8, 1838 (2017).
    [Crossref]
  5. M. R. Hee, E. A. Swanson, J. G. Fujimoto, and D. Huang, J. Opt. Soc. Am. B 9, 903 (1992).
    [Crossref]
  6. S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, Opt. Lett. 29, 2025 (2004).
    [Crossref]
  7. J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, Opt. Express 12, 6033 (2004).
    [Crossref]
  8. C. E. Saxer, J. F. De Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, Opt. Lett. 25, 1355 (2000).
    [Crossref]
  9. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, Opt. Express 20, 10229 (2012).
    [Crossref]
  10. M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, Opt. Express 21, 19412 (2013).
    [Crossref]
  11. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, Opt. Express 15, 1054 (2007).
    [Crossref]
  12. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, Opt. Express 15, 2421 (2007).
    [Crossref]
  13. H. Wang, M. K. Al-Qaisi, and T. Akkin, Opt. Lett. 35, 154 (2010).
    [Crossref]
  14. S. Rivet, M. J. Marques, A. Bradu, and A. Podoleanu, Opt. Express 25, 14533 (2017).
    [Crossref]
  15. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Express 9, 610 (2001).
    [Crossref]
  16. S. Moon and Z. Chen, Biomed. Opt. Express 9, 5280 (2018).
    [Crossref]
  17. S. Moon, Y. Qu, and Z. Chen, Opt. Express 26, 7253 (2018).
    [Crossref]

2018 (2)

2017 (2)

2013 (1)

2012 (1)

2010 (1)

2007 (2)

2004 (2)

2001 (1)

2000 (1)

1999 (1)

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, IEEE J. Sel. Top. Quantum Electron. 5, 1200 (1999).
[Crossref]

1998 (1)

1997 (1)

1992 (1)

Akkin, T.

Al-Qaisi, M. K.

Baumann, B.

Bradu, A.

Cense, B.

Chen, T. C.

Chen, Z.

Choi, W.

de Boer, J. F.

Duan, L.

Duker, J. S.

Fercher, A.

Fujimoto, J. G.

Götzinger, E.

Guo, S.

Hee, M. R.

Hitzenberger, C.

Hitzenberger, C. K.

Hong, Y.-J.

Huang, D.

Ju, M. J.

Jung, W.

Karamata, B.

Kurokawa, K.

Lasser, T.

Lim, Y.

Makita, S.

Malekafzali, A.

Marques, M. J.

Milner, T. E.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, IEEE J. Sel. Top. Quantum Electron. 5, 1200 (1999).
[Crossref]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, Opt. Lett. 22, 934 (1997).
[Crossref]

Miura, M.

Moon, S.

Mujat, M.

Nelson, J. S.

Park, B. H.

Pham, T. H.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, IEEE J. Sel. Top. Quantum Electron. 5, 1200 (1999).
[Crossref]

Pircher, M.

Podoleanu, A.

Potsaid, B.

Qu, Y.

Rivet, S.

Saxer, C. E.

Srinivas, S. M.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, IEEE J. Sel. Top. Quantum Electron. 5, 1200 (1999).
[Crossref]

J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, Opt. Express 3, 212 (1998).
[Crossref]

Sticker, M.

Swanson, E. A.

Tang, S.

van Gemert, M. J.

Wang, H.

Wang, L.

Yasuno, Y.

Zawadzki, R.

Zhang, J.

Zhao, Y.

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (1)

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, IEEE J. Sel. Top. Quantum Electron. 5, 1200 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

Opt. Lett. (4)

Supplementary Material (1)

NameDescription
» Visualization 1       Real-time imaging of reflectivity and retardation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic of our PS-OCT system. A long section of PM fiber is placed at the sample arm, while an SM fiber section of the same length is added at the reference arm. The rest of the fibers are all SM fibers.
Fig. 2.
Fig. 2. Definition of the coordinates with the PM fiber axes (a) and FF, FS, and SS image replicas obtained by our PS-OCT system (b).
Fig. 3.
Fig. 3. Images of rabbit tendon and muscle: the raw OCT image (a) contains FF and FS image segments separated by 2.7mm. The normal image of reflectivity (b) and the map of sample-field retardation (c) were obtained by amplitude-based analysis given by Eqs. (7) and (8), respectively. T, tendon; M, muscle. Scale bar: 2 mm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Er(z)=e^1ar1E(z)+e^2ar2E(z),
Es(z)=e^1as1E(zz0)+e^2as2E(zz0Δz),
Iint2=Re{ar1*as1E*(z)E(zz0)+ar2*as2E*(z)E(zz0Δz)}.
δ=arctan(as1/as2)
AFF(z)=|F1{Jint(k)·DFF(k)}|,
AFS(z+Δz)=|F1{Jint(k)·DFS(k)}|,
Anorm(z)=AFF2(z)+AFS2(z),
δ(z)=arcsin(AFS(z)Anorm(z))=arccos(AFF(z)Anorm(z))

Metrics