Abstract

We present two kinds of fully degeneracy-lifted solid-core photonic crystal multi-mode fibers aiming at multiple-input multiple-output-free direct fiber vector eigenmode multiplexing transmission. One of the target fiber structures is able to support 52 fully separated eigenmodes with effective index difference above 1.37×104 and confinement loss below 3.28×105dB/km over the whole C+Lband (1530–1625 nm). Specifically, it is suggested that >104 effective index separation is sufficient to possess polarization-maintaining properties, while for short-reach stable mode-division multiplexing transmission, the effective index difference >103 is highly desired. In particular, the other target fiber structure can further increase effective index separation above 1.10×103 among 24 eigenmodes with confinement loss below 6.68×104dB/km over the whole C+L band.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of PANDA-type elliptical-core multimode fiber supporting 24 fully lifted eigenmodes

Shi Chen and Jian Wang
Opt. Lett. 43(15) 3718-3721 (2018)

Fully degeneracy-lifted bow-tie elliptical ring-core multi-mode fiber

Shi Chen and Jian Wang
Opt. Express 26(14) 18773-18782 (2018)

Photonic crystal fiber for supporting 26 orbital angular momentum modes

Zi-Ang Hu, Yu-Qi Huang, Ai-Ping Luo, Hu Cui, Zhi-Chao Luo, and Wen-Cheng Xu
Opt. Express 24(15) 17285-17291 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, J. Fini, and L. Nelson, Nat. Photonics 7, 354 (2013).
    [Crossref]
  2. J. Wang, Photon. Res. 4, B14 (2016).
    [Crossref]
  3. J. Wang, Chin. Opt. Lett. 15, 030005 (2017).
  4. S. Randel, R. Ryf, A. Sierra, P. Winzer, A. Gnauck, C. Bolle, R. Essiambre, D. Peckham, A. McCurdy, and R. Lingle, Opt. Express 19, 16697 (2011).
    [Crossref]
  5. J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
    [Crossref]
  6. J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
    [Crossref]
  7. N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
    [Crossref]
  8. L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. Rusch, and S. LaRochelle, Opt. Express 25, 11736 (2017).
    [Crossref]
  9. H. Yan, S. Li, Z. Xie, X. Zheng, H. Zhang, and B. Zhou, Photon. Res. 5, 1 (2017).
    [Crossref]
  10. H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
    [Crossref]
  11. S. Chen and J. Wang, Opt. Lett. 43, 3718 (2018).
    [Crossref]
  12. S. Chen and J. Wang, Opt. Express 26, 18773 (2018).
    [Crossref]
  13. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, Opt. Express 9, 676 (2001).
    [Crossref]
  14. L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).
    [Crossref]
  15. M. W. Haakestad and H. E. Engan, J. Lightwave Technol. 24, 838 (2006).
    [Crossref]

2018 (3)

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

S. Chen and J. Wang, Opt. Lett. 43, 3718 (2018).
[Crossref]

S. Chen and J. Wang, Opt. Express 26, 18773 (2018).
[Crossref]

2017 (5)

2016 (1)

2013 (1)

D. Richardson, J. Fini, and L. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

2012 (1)

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[Crossref]

2011 (1)

2006 (1)

2001 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[Crossref]

Arkwright, J. W.

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[Crossref]

Bolle, C.

Cai, X.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

Chen, S.

Corsi, A.

Dong, Y.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

Du, C.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).
[Crossref]

Engan, H. E.

Essiambre, R.

Fini, J.

D. Richardson, J. Fini, and L. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Fujita, M.

Gnauck, A.

Haakestad, M. W.

Jian, S.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

Kawanishi, S.

Klitis, C.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

Kubota, H.

LaRochelle, S.

Li, H.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

Li, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

H. Yan, S. Li, Z. Xie, X. Zheng, H. Zhang, and B. Zhou, Photon. Res. 5, 1 (2017).
[Crossref]

Lin, J.

Lingle, R.

Liu, J.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).
[Crossref]

Love, J. D.

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[Crossref]

McCurdy, A.

Messaddeq, Y.

Mo, Q.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).
[Crossref]

Nejad, R. M.

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[Crossref]

Peckham, D.

Randel, S.

Ren, G.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Riesen, N.

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[Crossref]

Rusch, L.

Ryf, R.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[Crossref]

Sierra, A.

Sorel, M.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

Suzuki, K.

Tanaka, M.

Wang, A.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).
[Crossref]

Wang, J.

Wang, L.

Wei, B.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

Winzer, P.

Xiao, H.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

Xiao, S.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

Xie, Z.

Yan, H.

Yu, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

Zhang, H.

Zheng, X.

Zhou, B.

Zhu, L.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (2)

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[Crossref]

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, IEEE Photon. Technol. Lett. 29, 1340 (2017).
[Crossref]

J. Lightwave Technol. (2)

M. W. Haakestad and H. E. Engan, J. Lightwave Technol. 24, 838 (2006).
[Crossref]

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[Crossref]

Light Sci. Appl. (1)

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).
[Crossref]

Nat. Photonics (1)

D. Richardson, J. Fini, and L. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Photon. Res. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic cross section of the designed solid-core PC-MMF.
Fig. 2.
Fig. 2. Simulated typical intensity profiles and electric field polarization directions (blue arrow surface) for eight representative eigenmodes.
Fig. 3.
Fig. 3. Calculated (a) Δneff, (b) α, (c) Dλ, and (d) Aeff versus wavelength for the first PC-MMF structure.
Fig. 4.
Fig. 4. Calculated (a) Δneff, (b) α, (c) Dλ, and (d) Aeff versus wavelength for the second PC-MMF structure.

Tables (4)

Tables Icon

Table 1. Optimal Designs under Different b/a Values

Tables Icon

Table 2. Optimal Designs and Relative Fabrication Tolerance under Different b/a Values

Tables Icon

Table 3. Calculated Δneff, α, Dλ, and Aeff for all 52 Eigenmodes at 1550 nm

Tables Icon

Table 4. Calculated Δneff, α, Dλ, and Aeff for all 24 Eigenmodes at 1550 nm

Metrics