Abstract

Controlling light propagation through a step-index multimode optical fiber (MMF) has several important applications, including biological imaging. However, little consideration has been given to the coupling of fiber and tissue optics. In this Letter, we characterized the effects of tissue-induced light distortions, in particular those arising from a mismatch in the refractive index of the pre-imaging calibration and biological media. By performing the calibration in a medium matching the refractive index of the brain, optimal focusing ability was achieved, as well as a gain in focus uniformity within the field-of-view. These changes in illumination resulted in a 30% improvement in spatial resolution and intensity in fluorescence images of beads and live brain tissue. Beyond refractive index matching, our results demonstrate that sample-induced aberrations can severely deteriorate images from MMF-based systems.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging

Shay Ohayon, Antonio Caravaca-Aguirre, Rafael Piestun, and James J. DiCarlo
Biomed. Opt. Express 9(4) 1492-1509 (2018)

Focusing and scanning light through a multimode optical fiber using digital phase conjugation

Ioannis N. Papadopoulos, Salma Farahi, Christophe Moser, and Demetri Psaltis
Opt. Express 20(10) 10583-10590 (2012)

Delivery of focused short pulses through a multimode fiber

Edgar E. Morales-Delgado, Salma Farahi, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser
Opt. Express 23(7) 9109-9120 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
    [Crossref]
  2. S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
    [Crossref]
  3. S. Ohayon, A. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, Biomed. Opt. Express 9, 1492 (2018).
    [Crossref]
  4. R. Di Leonardo and S. Bianchi, Opt. Express 19, 247 (2011).
    [Crossref]
  5. T. Čižmár and K. Dholakia, Opt. Express 19, 18871 (2011).
    [Crossref]
  6. E. E. Morales-Delgado, D. Psaltis, and C. Moser, Opt. Express 23, 32158 (2015).
    [Crossref]
  7. M. Plöschner and T. Čižmár, Opt. Lett. 40, 197 (2015).
    [Crossref]
  8. M. A. Neil, M. J. Booth, and T. Wilson, Opt. Lett. 23, 1849 (1998).
    [Crossref]
  9. M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
    [Crossref]
  10. J. Binding, J. Ben Arous, J.-F. Leger, S. Gigan, C. Boccara, and L. Bourdieu, Opt. Express 19, 4833 (2011).
    [Crossref]
  11. D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (Taylor & Francis, 2001).
  12. R. Turcotte, Y. Liang, and N. Ji, Biomed. Opt. Express 8, 3891 (2017).
    [Crossref]
  13. D. Loterie, D. Psaltis, and C. Moser, Opt. Express 25, 6263 (2017).
    [Crossref]
  14. S. Bianchi, V. P. Rajamanickam, L. Ferrara, E. Di Fabrizio, C. Liberale, and R. Di Leonardo, Opt. Lett. 38, 4935 (2013).
    [Crossref]
  15. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, Opt. Express 23, 9109 (2015).
    [Crossref]
  16. E. E. Morales-Delgado, L. Urio, D. B. Conkey, N. Stasio, D. Psaltis, and C. Moser, Opt. Express 25, 7031 (2017).
    [Crossref]

2018 (3)

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

S. Ohayon, A. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, Biomed. Opt. Express 9, 1492 (2018).
[Crossref]

2017 (3)

2015 (4)

2013 (1)

2011 (3)

1998 (1)

Altwegg-Boussac, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

Ben Arous, J.

Bianchi, S.

Binding, J.

Boccara, C.

Booth, M. J.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

M. A. Neil, M. J. Booth, and T. Wilson, Opt. Lett. 23, 1849 (1998).
[Crossref]

Bourdieu, L.

Caravaca-Aguirre, A.

Cižmár, T.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

M. Plöschner and T. Čižmár, Opt. Lett. 40, 197 (2015).
[Crossref]

T. Čižmár and K. Dholakia, Opt. Express 19, 18871 (2011).
[Crossref]

Conkey, D. B.

Dholakia, K.

Di Fabrizio, E.

Di Leonardo, R.

DiCarlo, J. J.

Emptage, N. J.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

Farahi, S.

Ferrara, L.

Gigan, S.

Ji, N.

Koren, V.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

Leger, J.-F.

Leite, I. T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

Liang, Y.

Liberale, C.

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (Taylor & Francis, 2001).

Loterie, D.

Morales-Delgado, E. E.

Moser, C.

Neil, M. A.

Ohayon, S.

Padamsey, Z.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

Pakan, J. M. P.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

Papadopoulos, I. N.

Piestun, R.

Plöschner, M.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

M. Plöschner and T. Čižmár, Opt. Lett. 40, 197 (2015).
[Crossref]

Psaltis, D.

Rajamanickam, V. P.

Rochefort, N. L.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

Stasio, N.

Turcotte, R.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

R. Turcotte, Y. Liang, and N. Ji, Biomed. Opt. Express 8, 3891 (2017).
[Crossref]

Turtaev, S.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

Urio, L.

Vasquez-Lopez, S. A.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

Wilson, T.

Biomed. Opt. Express (2)

Light: Sci. Appl. (2)

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, Light: Sci. Appl. 7, 110 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, Light: Sci. Appl. 7, 92 (2018).
[Crossref]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Other (1)

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (Taylor & Francis, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Simplified schematic of the optical system (SMF, single mode optical fiber; PBS, polarizing beam splitter; PMT, photomultiplier tube; DM, dichroic mirror; SLM, spatial-light modulator; NPBS, non-polarizing beam splitter; MMF, CCD, charge-coupled device; multimode fiber; and OL, objective lens). (b–d) Schematics of the experimental setup: (b) for air calibration, (c) for glucose (refractive index matching) calibration, and (d) for imaging (CG, coverglass).
Fig. 2.
Fig. 2. Characterization of the illumination focal volume through an MMF in a 22% glucose solution. (a, b) Focal volume at the center of the MMF, characterized by (a) the IEF and (b) FWHM as a function of the calibration medium (n=6 fiber segments, open circles represent individual measurements). (c, d) Radial variation in (c) peak intensity and (d) FWHM of the focal volume for a calibration done in air and in a 22% glucose solution (n=3 fiber segments). Full circles are average values, and error bars represent the standard deviation.
Fig. 3.
Fig. 3. Imaging of fluorescent beads through an MMF. (a, b) Images of 1.0-μm beads acquired with the TM determined from a calibration in (a) air and in (b) a 22% glucose solution. Scale bar: 10 μm. Images were normalized to the peak intensity in (b). (c) Graph of the FWHM ratio for individual beads from images acquired with the glucose TM over that of the air TM as a function of the FWHM measured from images acquired with the air TM (n=51, slope =0.3μm1, R2=0.81). (d) Graph of the peak intensity for individual beads from images acquired with the glucose calibration as a function of the peak intensity measured from images acquired with the air calibration (n=75, slope =1.3, R2=0.47).
Fig. 4.
Fig. 4. Imaging of live neurons through an MMF in organotypic slices. (a, b) Images of a dendrite labelled with Alexa Fluor 488, acquired with the TM determined from a calibration in (a) air and in (b) a Tyrode’s solution. Scale bar and inset width: 10 μm. Images were normalized to the peak intensity in (b). (c, d) Power frequency spectra of the images shown in (a, b), respectively. Scale bar: 0.22μm1.

Tables (1)

Tables Icon

Table 1. Effect of a Coverglass During Calibration in Air

Metrics