Abstract

Interferometric spatial frequency modulation for imaging (I-SPIFI) is demonstrated for the first time, to our knowledge. Significantly, this imaging modality can be seamlessly combined with nonlinear SPIFI imaging and operates through single-element detection, making it compatible for use in scattering specimens. Imaging dynamic processes with submicrometer axial resolution through long working distance optics is shown, and high contrast images compared to traditional wide-field microscopy images. Finally, enhanced lateral resolution is achieved in I-SPIFI. To our knowledge, this is the first single platform that enables multimodal linear and nonlinear imaging, with enhanced resolution, all of which can be performed simultaneously.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of modulation masks for multimodal spatial frequency modulated microscopy

Nathan Worts, Michael Young, Jeff Field, Randy Bartels, Jason Jones, and Jeff Squier
Appl. Opt. 57(16) 4683-4691 (2018)

Simultaneous spatial frequency modulation imaging and micromachining with a femtosecond laser

Erica Block, Michael D. Young, David G. Winters, Jeffrey J. Field, Randy A. Bartels, and Jeff A. Squier
Opt. Lett. 41(2) 265-268 (2016)

Theory of diffraction effects in spatial frequency-modulated imaging

Daniel J. Higley, David G. Winters, Gregory L. Futia, and Randy A. Bartels
J. Opt. Soc. Am. A 29(12) 2579-2590 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
    [Crossref]
  2. M. Young, J. Field, K. Sheetz, R. Bartels, and J. Squier, Adv. Opt. Photon. 7, 276 (2015).
    [Crossref]
  3. G. Futia, P. Schlup, D. Winters, and R. Bartels, Opt. Express 19, 1626 (2011).
    [Crossref]
  4. S. R. Domingue, D. G. Winters, and R. Bartels, Optica 2, 929 (2015).
    [Crossref]
  5. S. R. Domingue and R. Bartels, J. Opt. Soc. Am. B 33, 1216 (2016).
    [Crossref]
  6. J. J. Field, D. G. Winters, and R. Bartels, Optica 3, 971 (2016).
    [Crossref]
  7. J. J. Field, D. G. Winters, and R. Bartels, J. Opt. Soc. Am. A 32, 2156 (2015).
    [Crossref]
  8. P. Schlup, G. Futia, and R. Bartels, Appl. Phys. Lett. 98, 211115 (2011).
    [Crossref]
  9. D. J. Higley, D. W. Winters, G. Futia, and R. Bartels, J. Opt. Soc. Am. A 29, 2579 (2012).
    [Crossref]
  10. D. J. Higley, D. W. Winters, G. Futia, and R. A. Bartels, Opt. Lett. 38, 1763 (2013).
    [Crossref]
  11. N. Worts, M. Young, J. Field, R. Bartels, and J. Squier, Appl. Opt. 57, 4683 (2018).
    [Crossref]
  12. J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
    [Crossref]
  13. E. Block, M. Young, D. Winters, J. Field, R. Bartels, and J. Squier, Opt. Lett. 41, 265 (2016).
    [Crossref]
  14. P. de Groot, Adv. Opt. Photon. 7, 1 (2015).
    [Crossref]
  15. V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
    [Crossref]
  16. V. Duran, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andres, and J. Lancis, Opt. Express 23, 14424 (2015).
    [Crossref]
  17. E. Tajahuerce, V. Duran, P. Clemente, E. Irles, F. Soldevila, P. Andres, and J. Lancis, Opt. Express 22, 16945 (2014).
    [Crossref]
  18. R. Horisaki, H. Matsui, and J. Tanida, Appl. Opt. 56, 4085 (2017).
    [Crossref]
  19. Z. Zhang and J. Zhong, Opt. Lett. 41, 2497 (2016).
    [Crossref]
  20. J. Squier, J. Thomas, E. Block, C. Durfee, and S. Backus, Appl. Phys. A 114, 209 (2014).
    [Crossref]
  21. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [Crossref]

2018 (1)

2017 (1)

2016 (5)

2015 (5)

2014 (2)

2013 (2)

D. J. Higley, D. W. Winters, G. Futia, and R. A. Bartels, Opt. Lett. 38, 1763 (2013).
[Crossref]

S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
[Crossref]

2012 (2)

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

D. J. Higley, D. W. Winters, G. Futia, and R. Bartels, J. Opt. Soc. Am. A 29, 2579 (2012).
[Crossref]

2011 (2)

G. Futia, P. Schlup, D. Winters, and R. Bartels, Opt. Express 19, 1626 (2011).
[Crossref]

P. Schlup, G. Futia, and R. Bartels, Appl. Phys. Lett. 98, 211115 (2011).
[Crossref]

2006 (1)

Allende Motz, A. M.

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

Andres, P.

Backus, S.

J. Squier, J. Thomas, E. Block, C. Durfee, and S. Backus, Appl. Phys. A 114, 209 (2014).
[Crossref]

Bartels, R.

Bartels, R. A.

Block, E.

E. Block, M. Young, D. Winters, J. Field, R. Bartels, and J. Squier, Opt. Lett. 41, 265 (2016).
[Crossref]

J. Squier, J. Thomas, E. Block, C. Durfee, and S. Backus, Appl. Phys. A 114, 209 (2014).
[Crossref]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

Buckley, J.

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

Chong, A.

Clemente, P.

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

de Groot, P.

DeLuca, J.

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

DeLuca, K.

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

Domingue, S.

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

Domingue, S. R.

Duran, V.

Durfee, C.

J. Squier, J. Thomas, E. Block, C. Durfee, and S. Backus, Appl. Phys. A 114, 209 (2014).
[Crossref]

Field, J.

Field, J. J.

Futia, G.

Higley, D. J.

Horisaki, R.

Horton, N.

S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
[Crossref]

Howard, S.

S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
[Crossref]

Irles, E.

Kobat, D.

S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
[Crossref]

Lancis, J.

Levi, D.

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

Matsui, H.

Mousavi, H.

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

Renninger, W.

Schlup, P.

G. Futia, P. Schlup, D. Winters, and R. Bartels, Opt. Express 19, 1626 (2011).
[Crossref]

P. Schlup, G. Futia, and R. Bartels, Appl. Phys. Lett. 98, 211115 (2011).
[Crossref]

Sheetz, K.

Soldevila, F.

Squier, J.

N. Worts, M. Young, J. Field, R. Bartels, and J. Squier, Appl. Opt. 57, 4683 (2018).
[Crossref]

E. Block, M. Young, D. Winters, J. Field, R. Bartels, and J. Squier, Opt. Lett. 41, 265 (2016).
[Crossref]

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

M. Young, J. Field, K. Sheetz, R. Bartels, and J. Squier, Adv. Opt. Photon. 7, 276 (2015).
[Crossref]

J. Squier, J. Thomas, E. Block, C. Durfee, and S. Backus, Appl. Phys. A 114, 209 (2014).
[Crossref]

Straub, A.

S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
[Crossref]

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

Tajahuerce, E.

Tanida, J.

Thomas, J.

J. Squier, J. Thomas, E. Block, C. Durfee, and S. Backus, Appl. Phys. A 114, 209 (2014).
[Crossref]

Wernsing, K.

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

Winters, D.

Winters, D. G.

Winters, D. W.

Wise, F.

Worts, N.

Xu, C.

S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
[Crossref]

Young, M.

Zhang, Z.

Zhong, J.

Adv. Opt. Photon. (2)

Appl. Opt. (2)

Appl. Phys. A (1)

J. Squier, J. Thomas, E. Block, C. Durfee, and S. Backus, Appl. Phys. A 114, 209 (2014).
[Crossref]

Appl. Phys. Lett. (1)

P. Schlup, G. Futia, and R. Bartels, Appl. Phys. Lett. 98, 211115 (2011).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. Howard, A. Straub, N. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (2)

Proc. Natl. Acad. Sci. USA (2)

J. Field, K. Wernsing, S. Domingue, A. M. Allende Motz, K. DeLuca, D. Levi, J. DeLuca, M. Young, J. Squier, and R. Bartels, Proc. Natl. Acad. Sci. USA 113, 6605 (2016).
[Crossref]

V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, Proc. Natl. Acad. Sci. USA 109, E1679 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagram of the SPIFI microscope with the integrated CO 2 laser heating system. The enclosed dotted area highlights the common path interferometer portion of the microscope which makes spatial interferometric contrast imaging possible.
Fig. 2.
Fig. 2. Signal interference of small displacements at the focal plane of the I-SPIFI system. (a) and (b) show the modeled and measured interference, respectively, with blue representing the unperturbed surface, and red the perturbed surface. (c) images of a 1951 AF resolution target collected in the transmission and reflection directions, highlighting the carrier frequency of the modulation remains the same in both modalities. The red line indicates the position of the I-SPIFI images. (d) The reconstructed image as a result of a linear increase in the displacement of the focal plane. This simple model tracks the dynamic experimental results in Fig. 3.
Fig. 3.
Fig. 3. Images of dynamic surface expansion of BK7 glass. (a) is the image in the reflection geometry, while (b) is in the transmission direction. The red dashed lines are indicative of when the CO 2 laser was fired.
Fig. 4.
Fig. 4. Modeled and experimentally measured 2D Fourier transforms of the three light sheets ( + 1 , 0, 1 orders) of the I-SPIFI system at the exit pupil of OBJ (Fig. 1). (a) and (b) are the modeled 2D Fourier transforms of the unperturbed surface and the expanded surface, respectively, and (c) and (d) are the experimental images of the same surfaces.
Fig. 5.
Fig. 5. Comparison of white light and I-SPIFI images of transparent polish on a glass substrate. (a) 70 frame composite white light image using a 100 × objective. (b) I-SPIFI image of the same transparent polish structure.
Fig. 6.
Fig. 6. I-SPIFI images of polish on a microscope slide. Fringing reveals the topology of the structure and is evident in (a) the fundamental resolution image, and is seen even more clearly in (b) the second order image.
Fig. 7.
Fig. 7. I-SPIFI images of Newton rings between two microscope slides. (a) and (b) are images of a Newton ring sample that were formed at orthogonal orientations to show that the fringes track with the orientation of the sample.

Metrics