Abstract

We present a coherent fiber bundle comprising over 11,000 doped silica cores separated by an air-filled cladding. The fiber is characterized, and its imaging quality is shown to be a substantial improvement over the commercial state of the art, with comparable resolution over an unparalleled spectral range.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Low index contrast imaging fibers

J. M. Stone, H. A. C. Wood, K. Harrington, and T. A. Birks
Opt. Lett. 42(8) 1484-1487 (2017)

Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle

Esben Ravn Andresen, Géraud Bouwmans, Serge Monneret, and Hervé Rigneault
Opt. Lett. 38(5) 609-611 (2013)

Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication

Eric Numkam Fokoua, Marco N. Petrovich, Naveen K. Baddela, Natalie V. Wheeler, John R. Hayes, Francesco Poletti, and David J. Richardson
Opt. Lett. 38(9) 1382-1384 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, Opt. Lett. 36, 1707 (2011).
    [Crossref]
  2. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, Opt. Express 24, 16835 (2016).
    [Crossref]
  3. X. Chen, K. L. Reichenbach, and C. Xu, Opt. Express 16, 21598 (2008).
    [Crossref]
  4. N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, Opt. Commun. 283, 633 (2010).
    [Crossref]
  5. M. Koshiba, K. Saitoh, and Y. Kokubun, IEICE Electron. Express 6, 98 (2009).
    [Crossref]
  6. K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, Photonics Society Summer Topical Meeting Series (IEEE2012).
  7. D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
    [Crossref]
  8. S. Zheng, G. Ren, Z. Lin, and S. Jian, Appl. Opt. 52, 4541 (2013).
    [Crossref]
  9. T. Kobayashi, T. Katagiri, and Y. Matsuura, Opt. Express 24, 26565 (2016).
    [Crossref]
  10. Y. Matsuura and K. Naito, Biomed. Opt. Express 2, 65 (2011).
    [Crossref]
  11. B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, Opt. Lett. 40, 4384 (2015).
    [Crossref]
  12. J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [Crossref]
  13. T. A. Birks, J. C. Knight, and P. St.J. Russell, Opt. Lett. 22, 961 (1997).
    [Crossref]
  14. L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
    [Crossref]
  15. M. A. van Eijkelenborg, Opt. Express 12, 342 (2004).
    [Crossref]
  16. J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
    [Crossref]
  17. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
    [Crossref]
  18. M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
    [Crossref]
  19. “Resolving power chart,” (Edmund Scientific Company, 1978).
  20. J. M. Khosrofian and B. A. Garetz, Appl. Opt. 22, 3406 (1983).
    [Crossref]
  21. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St.J. Russell, and M. W. Mason, Opt. Express 12, 2864 (2004).
    [Crossref]
  22. S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
    [Crossref]
  23. https://doi.org/10.15125/BATH-00554 .

2018 (1)

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

2017 (1)

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (1)

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

S. Zheng, G. Ren, Z. Lin, and S. Jian, Appl. Opt. 52, 4541 (2013).
[Crossref]

2011 (2)

2010 (1)

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, Opt. Commun. 283, 633 (2010).
[Crossref]

2009 (2)

M. Koshiba, K. Saitoh, and Y. Kokubun, IEICE Electron. Express 6, 98 (2009).
[Crossref]

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[Crossref]

2008 (1)

2004 (2)

1997 (1)

1996 (1)

1983 (1)

1958 (1)

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[Crossref]

Anderson, P. W.

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[Crossref]

Andresen, E. R.

Antaris, A. L.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Antonio-Lopez, J. E.

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

Arce-Diego, J. L.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, Opt. Commun. 283, 633 (2010).
[Crossref]

Atkin, D. M.

Bennett, C. R.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[Crossref]

Birks, T. A.

Chen, X.

Cho, L.

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

Correa, R. A.

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

Dai, H.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Diao, S.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Dunsby, C.

Fanjul-Vélez, F.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, Opt. Commun. 283, 633 (2010).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

French, P. M. W.

Gai, X.

Garetz, B. A.

Gigan, S.

Guo, W.

Hong, G.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Huang, W.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Jian, S.

Katagiri, T.

Katz, O.

Khosrofian, J. M.

Knight, J. C.

Kobayashi, T.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, IEICE Electron. Express 6, 98 (2009).
[Crossref]

Koshiba, M.

M. Koshiba, K. Saitoh, and Y. Kokubun, IEICE Electron. Express 6, 98 (2009).
[Crossref]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, Photonics Society Summer Topical Meeting Series (IEEE2012).

Leon-Saval, S. G.

Li, X.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Liang, Y.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Lin, Z.

Liu, Z.

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

Lu, C.

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

Luo, J.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Luther-Davies, B.

Ma, Z.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Mason, M. W.

Matsuo, S.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, Photonics Society Summer Topical Meeting Series (IEEE2012).

Matsuura, Y.

Michaille, L.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[Crossref]

Naito, K.

Neil, M. A. A.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Oron, D.

Ortega-Quijano, N.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, Opt. Commun. 283, 633 (2010).
[Crossref]

Paterson, C.

Porat, A.

Qi, S.

Reichenbach, K. L.

Ren, G.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Rigneault, H.

Russell, P. St.J.

Saitoh, K.

M. Koshiba, K. Saitoh, and Y. Kokubun, IEICE Electron. Express 6, 98 (2009).
[Crossref]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, Photonics Society Summer Topical Meeting Series (IEEE2012).

Schülzgen, A.

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

Shepherd, T. J.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[Crossref]

Takenaga, K.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, Photonics Society Summer Topical Meeting Series (IEEE2012).

Tam, H.

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

Tang, D.

Tao, G.

Taylor, D. M.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[Crossref]

Thompson, A. J.

Tse, M. V.

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

van Eijkelenborg, M. A.

Wadsworth, W. J.

Wai, P. A.

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

Wan, H.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Wang, H.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Wang, J.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Wang, R.

Xu, C.

Yang, A.

Yang, Q.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Yang, Z.

Yu, K.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Yu, Y.

Yue, J.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Zhai, C.

Zhang, B.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, Opt. Lett. 40, 4384 (2015).
[Crossref]

Zhao, J.

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

Zheng, D.

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

Zheng, S.

Zhong, Y.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Zhu, S.

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Zhu, Z.

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[Crossref]

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, IEICE Electron. Express 6, 98 (2009).
[Crossref]

Materials (1)

M. V. Tse, Z. Liu, L. Cho, C. Lu, P. A. Wai, and H. Tam, Materials 7, 4567 (2014).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Opt. Commun. (1)

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, Opt. Commun. 283, 633 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. (1)

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, and H. Dai, Proc. Natl. Acad. Sci. USA 114, 962 (2017).
[Crossref]

Sci. Rep. (1)

J. Zhao, J. E. Antonio-Lopez, Z. Zhu, D. Zheng, R. A. Correa, and A. Schülzgen, Sci. Rep. 8, 3065 (2018).
[Crossref]

Other (3)

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, Photonics Society Summer Topical Meeting Series (IEEE2012).

https://doi.org/10.15125/BATH-00554 .

“Resolving power chart,” (Edmund Scientific Company, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagrams of the two main stages of fabrication. Shaded regions are silica glass, and the unshaded circles are hollow capillaries. (a) depicts the first stacking stage with 57 cores of three different inner diameters, arranged according to the letters. (b) shows an example final preform structure containing the canes produced from the first stack within an outer jacket tube and some solid silica packing canes at the edges to maintain the structure.
Fig. 2.
Fig. 2. Scanning electron microscope images of the 535 μm fiber. The cores are roughly 1.9 μm in diameter, with a center-to-center spacing of 3.5 μm. Cleaving a flat end face has proved challenging—a problem Zhao et al. also encountered with their glass air random fiber [17].
Fig. 3.
Fig. 3. Comparison of USAF test target images from the 535 μm air-clad imaging fiber and Fujikura’s FIGH-30-650S, taken using a silicon CCD camera. Elements 1 to 6 of group 7 are depicted to the top right of each image, with element 1 of group 6 below. The individual linewidths of group 7 range from 2.19 to 3.91 μm.
Fig. 4.
Fig. 4. Image of group 7 of a USAF test target taken using the high-resolution 335-μm-outer-diameter air-clad fiber and a 500 nm bandpass filter. An identifier has been added for element 6.
Fig. 5.
Fig. 5. Image of group 6 of a USAF test target taken at 1600 nm using the 535 μm air-clad fiber and a short wave infra-red camera. The individual linewidths shown in group 6 range from 7.81 to 4.38 μm.
Fig. 6.
Fig. 6. Near-field of the output fiber end face when coupling into the core, circled red. The yellow hexagon indicates the boundary of a sublattice stack.
Fig. 7.
Fig. 7. Micrographs for transmitted flood illuminated white light of the untapered (left) and tapered (middle) fiber. Elements 3 to 6 of USAF group 7 imaged at 500 nm are shown at the right—the linewidth in the smallest element is 2.19 μm. The scale bar gives the scale of the target, to compare resolution. However, the incidental magnifying effect of the taper made the image twice as big at the untapered proximal end of the fiber.

Metrics