Abstract

The Macaluso–Corbino effect describes the optical rotation of light in the spectral proximity to an atomic resonance. One use of this effect is narrowband optical filtering. So-called Faraday filters utilize the difference of the two components of the refractive indices, which are split by the Zeeman effect in a longitudinal magnetic field. This allows for a net rotation of a linearly polarized input beam within the medium. Placing it between crossed polarizers therefore only allows light near resonance to pass. Since any resonant spectrum implies anomalous dispersion on resonance, these filters are often characterized as being based on this anomalous dispersion. This Letter analyses to what extent the anomalous dispersion and the anomalous rotation are relevant for Faraday filters. Considering the sign of the anomalous rotation introduces a strict criterion if the filter is operated in the line center or in the spectral wing of an atomic resonance.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersive magnetooptic filters

Pochi Yeh
Appl. Opt. 21(11) 2069-2075 (1982)

Faraday anomalous dispersion optical filter at 133Cs weak 459  nm transition

Xiaobo Xue, Duo Pan, Xiaogang Zhang, Bin Luo, Jingbiao Chen, and Hong Guo
Photon. Res. 3(5) 275-278 (2015)

Sodium-vapor dispersive Faraday filter

H. Chen, C. Y. She, Paul Searcy, and Eric Korevaar
Opt. Lett. 18(12) 1019-1021 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription