Abstract

Extending the optical imaging of director structures in liquid crystals (LCs) beyond the diffraction limit is poised to provide insights into previously elusive LC physics at the nanoscale. Here, we develop and characterize super-resolution stimulated emission depletion (STED) microscopy with molecular orientation sensitivity and apply it to reveal spatially localized director structures in chiral nematic and smectic LCs. As examples, we demonstrate director imaging and reconstruction of nanoscale LC configurations, including solitonic Bloch walls and two-dimensional skyrmions, both observed in sub-micrometer-thick strongly confined LC films, and focal conic domains in smectic LCs. The 100  nm resolution of our orientation-resolved STED imaging is three times better than that of fluorescence confocal polarizing microscopy and polarized nonlinear imaging techniques, but can be potentially improved even further.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

Jung-Shen B. Tai and Ivan I. Smalyukh, "Super-resolution stimulated emission depletion microscopy of director structures in liquid crystals: publisher’s note," Opt. Lett. 43, 5475-5475 (2018)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-21-5475

15 October 2018: Typographical corrections were made to the body text.


OSA Recommended Articles
Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids

Aliaksandr V. Kachynski, Andrey N. Kuzmin, Paras N. Prasad, and Ivan I. Smalyukh
Opt. Express 16(14) 10617-10632 (2008)

Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy

Rahul P. Trivedi, Taewoo Lee, Kris A. Bertness, and Ivan I. Smalyukh
Opt. Express 18(26) 27658-27669 (2010)

Nanosecond control and optical pulse shaping by stimulated emission depletion in a liquid crystal

Maruša Vitek and Igor Muševič
Opt. Express 23(13) 16921-16932 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 2000).
  2. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
    [Crossref]
  3. T. Lee, R. P. Trivedi, and I. I. Smalyukh, Opt. Lett. 35, 3447 (2010).
    [Crossref]
  4. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
    [Crossref]
  5. T. Lee, H. Mundoor, D. G. Gann, T. J. Callahan, and I. I. Smalyukh, Opt. Express 21, 12129 (2013).
    [Crossref]
  6. E. Abbe, Arch. für mikroskopische Anat. 9, 413 (1873).
    [Crossref]
  7. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [Crossref]
  8. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
    [Crossref]
  9. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
    [Crossref]
  10. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
    [Crossref]
  11. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, Biophys. J. 91, 4258 (2006).
    [Crossref]
  12. G. Moneron and S. W. Hell, Opt. Express 17, 14567 (2009).
    [Crossref]
  13. M. Vitek and I. Muševič, Opt. Express 23, 16921 (2015).
    [Crossref]
  14. I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
    [Crossref]
  15. V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
    [Crossref]
  16. S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
    [Crossref]
  17. P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017).
    [Crossref]
  18. M. Ravnik and S. Žumer, Liq. Cryst. 36, 1201 (2009).
    [Crossref]
  19. G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, Optica 5, 32 (2018).
    [Crossref]
  20. M. Kleman, Points, Lines and Walls: In Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, 1983).
  21. N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
    [Crossref]
  22. P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
    [Crossref]
  23. I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010).
    [Crossref]

2018 (1)

2017 (1)

P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017).
[Crossref]

2016 (1)

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

2015 (1)

2014 (1)

P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
[Crossref]

2013 (2)

2010 (2)

T. Lee, R. P. Trivedi, and I. I. Smalyukh, Opt. Lett. 35, 3447 (2010).
[Crossref]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010).
[Crossref]

2009 (2)

M. Ravnik and S. Žumer, Liq. Cryst. 36, 1201 (2009).
[Crossref]

G. Moneron and S. W. Hell, Opt. Express 17, 14567 (2009).
[Crossref]

2007 (2)

I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
[Crossref]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, Biophys. J. 91, 4258 (2006).
[Crossref]

2005 (1)

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

2001 (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[Crossref]

2000 (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[Crossref]

1994 (1)

1873 (1)

E. Abbe, Arch. für mikroskopische Anat. 9, 413 (1873).
[Crossref]

Abbe, E.

E. Abbe, Arch. für mikroskopische Anat. 9, 413 (1873).
[Crossref]

Ackerman, P. J.

P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017).
[Crossref]

P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Callahan, T. J.

Castello, M.

Chaikin, P. M.

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 2000).

Clark, N. A.

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Diaspro, A.

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[Crossref]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[Crossref]

Gann, D. G.

Gibson, E. A.

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, Biophys. J. 91, 4258 (2006).
[Crossref]

Hell, S. W.

G. Moneron and S. W. Hell, Opt. Express 17, 14567 (2009).
[Crossref]

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[Crossref]

S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, Biophys. J. 91, 4258 (2006).
[Crossref]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[Crossref]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[Crossref]

Kleman, M.

M. Kleman, Points, Lines and Walls: In Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, 1983).

Koho, S.

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Lansac, Y.

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010).
[Crossref]

Lavrentovich, O. D.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[Crossref]

Lee, T.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Lubensky, T. C.

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 2000).

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, Biophys. J. 91, 4258 (2006).
[Crossref]

Meyer, S. A.

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

Moneron, G.

Mundoor, H.

Muševic, I.

Nagaosa, N.

N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Ozbay, B. N.

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Potcoava, M.

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Ravnik, M.

M. Ravnik and S. Žumer, Liq. Cryst. 36, 1201 (2009).
[Crossref]

Restrepo, D.

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[Crossref]

Salcedo, E.

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

Senyuk, B.

P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
[Crossref]

Shiyanovskii, S. V.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[Crossref]

Smalyukh, I. I.

P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017).
[Crossref]

P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
[Crossref]

T. Lee, H. Mundoor, D. G. Gann, T. J. Callahan, and I. I. Smalyukh, Opt. Express 21, 12129 (2013).
[Crossref]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, Opt. Lett. 35, 3447 (2010).
[Crossref]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010).
[Crossref]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
[Crossref]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Tokura, Y.

N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[Crossref]

Tortarolo, G.

Trivedi, R. P.

P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
[Crossref]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010).
[Crossref]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, Opt. Lett. 35, 3447 (2010).
[Crossref]

van de Lagemaat, J.

P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
[Crossref]

Vicidomini, G.

Vitek, M.

Westphal, V.

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

Wichmann, J.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[Crossref]

Žumer, S.

M. Ravnik and S. Žumer, Liq. Cryst. 36, 1201 (2009).
[Crossref]

Appl. Phys. Lett. (1)

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Arch. für mikroskopische Anat. (1)

E. Abbe, Arch. für mikroskopische Anat. 9, 413 (1873).
[Crossref]

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, Biophys. J. 91, 4258 (2006).
[Crossref]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[Crossref]

J. Biomed. Opt. (1)

S. A. Meyer, B. N. Ozbay, M. Potcoava, E. Salcedo, D. Restrepo, and E. A. Gibson, J. Biomed. Opt. 21, 066017 (2016).
[Crossref]

Liq. Cryst. (1)

M. Ravnik and S. Žumer, Liq. Cryst. 36, 1201 (2009).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
[Crossref]

Nat. Mater. (1)

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[Crossref]

Nat. Nanotechnol. (1)

N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Phys. Rev. E (1)

P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. Rev. E 90, 012505 (2014).
[Crossref]

Phys. Rev. Lett. (1)

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

Phys. Rev. X (1)

P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[Crossref]

Other (2)

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 2000).

M. Kleman, Points, Lines and Walls: In Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Principles and implementation of STED polarizing microscopy (STED-PM). (a) Diagram illustrating the photophysical processes of fluorophores, including excitation, spontaneous emission, and stimulated emission. (b) Absorption and fluorescence spectra of Nile Red and the wavelengths and their ranges used in this work for excitation (570 nm), fluorescence detection (600–640 nm, as marked by orange arrows), and STED (715 nm). (c) Super-resolution PSF obtained by co-locating the donut-shaped STED beam and diffraction-limited excitation beam. (d) Simplified schematic of a STED polarizing microscope. A polarizer placed in an optical path right before the epi-detection objective enables polarized imaging and ensuing n ( r ) reconstruction based on polarization-dependent fluorescence textures. The laser pulse duration is 100    ps , and the repetition rate is 20 MHz.
Fig. 2.
Fig. 2. Characterization of STED-PM and twist walls in chiral LCs. (a) Confocal and (b) STED images of Bloch walls in a chiral nematic LC probed with circularly polarized excitation/STED. The line intensity profile between the two arrows in (a) and (b) are shown in (f) in black and red, respectively, with the latter highlighted by filling the space below the curve for clarity. FWHMs of the peaks resolved by STED in (f) are 115 nm, 96 nm, and 131 nm (from left to right), while that in confocal imaging is 350 nm for the rightmost one. (c)–(e) STED images of the twist walls obtained with (c) circular and (d), (e) orthogonal linear polarizations reveal the dependence of polarized image intensity on α plotted in (g), and the red line is a guide to the eye. (h) Computer-simulated director structure in the vertical plane perpendicular to the wall visualized by double cones colored according to their orientations and the order-parameter sphere S 2 / Z 2 with diametrically opposite points identified (shown in the upper-right inset). Polarizations are marked in the upper-right corners of (a)–(e). All scale bars are 1 μm. Here and elsewhere in the paper, the acquisition time was within 2–10 min.
Fig. 3.
Fig. 3. Nanoscale LC skyrmions. (a) FCPM and (b) STED-PM images of a skyrmion. (c) Corresponding line profiles through the center of the skyrmion. (d)–(g) STED images taken with four different linear polarizations shown by double arrows. (h) Experimental reconstruction of director orientation within a skyrmion visualized by different colors [upper-right inset in (j)] and (i) its computer-simulated counterpart. (j), (k) Computer-simulated director field configuration of a skyrmion visualized by colored double cones in the (j) horizontal and (k) vertical planes. All scale bars are 300 nm.
Fig. 4.
Fig. 4. STED-PM of defects in a smectic LC. (a) Schematic of the director structure of an FCD near the substrate with planar boundary conditions, where the blue rods and dots show the in-plane and vertical orientation of LC molecules, respectively. The thin black lines indicate the smectic layers, and thick black lines are the two singular lines along an ellipse and through its focus. The region colored red shows the expected fluorescence pattern for imaging with linear polarization marked in the upper-right corner. (b)–(i) Confocal [(b)–(e)] and STED-PM images [(f)–(i)] of an FCD for different linear polarizations. Scale bars are 300 nm.

Metrics