Abstract

We demonstrate the microprinting of a novel suspended polymer fiber Bragg grating for high-sensitivity temperature measurements. The proposed sensor was developed using a femtosecond laser-induced multiphoton polymerization technique. The grating was cured in a single-groove silica tube spliced between two single-mode fibers. Its transmission spectrum, mode field, and temperature response were thoroughly investigated. A sensitivity of 220  pm/°C was achieved over a temperature range of 24°C to 40°C, which is meaningful in biosensing applications. This all-in-fiber polymer Bragg grating exhibits high temperature sensitivity, excellent mechanical strength, and ultrahigh integration. As such, a temperature sensing element of this type would be a beneficial tool for biological measurements.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

Getinet Woyessa, Andrea Fasano, Alessio Stefani, Christos Markos, Kristian Nielsen, Henrik K. Rasmussen, and Ole Bang
Opt. Express 24(2) 1253-1260 (2016)

Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

Andrea Fasano, Getinet Woyessa, Pavol Stajanca, Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Katerina Krebber, and Ole Bang
Opt. Mater. Express 6(2) 649-659 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
    [Crossref]
  2. D. Dendukuri, D. C. Pregibon, J. Collins, and T. A. Hatton, Nat. Mater. 5, 365 (2006).
    [Crossref]
  3. Y. F. Chen, J. R. Tao, and Z. Cui, Microelectron. Eng. 78-79, 612 (2005).
    [Crossref]
  4. H. Zou, S. S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).
    [Crossref]
  5. J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
    [Crossref]
  6. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, and K. Dasgupta, Sens. Actuators A 147, 150 (2008).
    [Crossref]
  7. D. Grobnic, S. J. Mihailov, J. Ballato, and P. D. Dragic, Optica 2, 313 (2015).
    [Crossref]
  8. C. Markos, A. Stefani, K. Nielsen, and H. K. Rasmussen, Opt. Express 21, 4758 (2013).
    [Crossref]
  9. G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 29, 575 (2017).
    [Crossref]
  10. W. Yuan, L. Khan, and D. J. Webb, Opt. Express 19, 1971 (2011).
    [Crossref]
  11. C. A. F. Marques, P. Antunes, P. Mergo, and D. J. Webb, IEEE Photon. Technol. Lett. 29, 500 (2017).
    [Crossref]
  12. W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
    [Crossref]
  13. G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, and O. Bang, Opt. Lett. 42, 1161 (2017).
    [Crossref]
  14. P. F. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, Opt. Lett. 36, 2233 (2011).
    [Crossref]
  15. K. K. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. Yang, and P. R. Herman, Opt. Express 21, 24076 (2013).
    [Crossref]
  16. J. R. Grenier, L. A. Fernandes, and P. R. Herman, Opt. Express 21, 4493 (2013).
    [Crossref]
  17. T. Gissibl, S. Wanger, M. Schmid, and H. Giessen, Opt. Mater. Express 7, 2293 (2017).
    [Crossref]
  18. X. H. Feng, H. Y. Tam, and W. H. Chung, Opt. Commun. 263, 295 (2006).
    [Crossref]
  19. G. Woyessa, A. Fasano, C. Markos, and A. Stefani, Opt. Mater. Express 7, 286 (2017).
    [Crossref]
  20. Z. Y. Li, C. R. Liao, J. Song, Y. Wang, and F. Zhu, Photon. Res. 4, 197 (2016).
    [Crossref]
  21. Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
    [Crossref]
  22. W. Yuan and A. Stefani, IEEE Photon. Technol. Lett. 24, 401 (2012).
    [Crossref]

2017 (6)

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 29, 575 (2017).
[Crossref]

C. A. F. Marques, P. Antunes, P. Mergo, and D. J. Webb, IEEE Photon. Technol. Lett. 29, 500 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, and O. Bang, Opt. Lett. 42, 1161 (2017).
[Crossref]

T. Gissibl, S. Wanger, M. Schmid, and H. Giessen, Opt. Mater. Express 7, 2293 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, and A. Stefani, Opt. Mater. Express 7, 286 (2017).
[Crossref]

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

2016 (2)

Z. Y. Li, C. R. Liao, J. Song, Y. Wang, and F. Zhu, Photon. Res. 4, 197 (2016).
[Crossref]

Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
[Crossref]

2015 (1)

2013 (3)

2012 (2)

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
[Crossref]

W. Yuan and A. Stefani, IEEE Photon. Technol. Lett. 24, 401 (2012).
[Crossref]

2011 (2)

2008 (2)

H. Zou, S. S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).
[Crossref]

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, and K. Dasgupta, Sens. Actuators A 147, 150 (2008).
[Crossref]

2006 (2)

D. Dendukuri, D. C. Pregibon, J. Collins, and T. A. Hatton, Nat. Mater. 5, 365 (2006).
[Crossref]

X. H. Feng, H. Y. Tam, and W. H. Chung, Opt. Commun. 263, 295 (2006).
[Crossref]

2005 (1)

Y. F. Chen, J. R. Tao, and Z. Cui, Microelectron. Eng. 78-79, 612 (2005).
[Crossref]

2000 (1)

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[Crossref]

Antunes, P.

C. A. F. Marques, P. Antunes, P. Mergo, and D. J. Webb, IEEE Photon. Technol. Lett. 29, 500 (2017).
[Crossref]

Bai, Z. Y.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

Ballato, J.

Bang, O.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 29, 575 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, and O. Bang, Opt. Lett. 42, 1161 (2017).
[Crossref]

Brambilla, G.

Chakraborty, A. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, and K. Dasgupta, Sens. Actuators A 147, 150 (2008).
[Crossref]

Chen, Y. F.

Y. F. Chen, J. R. Tao, and Z. Cui, Microelectron. Eng. 78-79, 612 (2005).
[Crossref]

Chung, W. H.

X. H. Feng, H. Y. Tam, and W. H. Chung, Opt. Commun. 263, 295 (2006).
[Crossref]

Collins, J.

D. Dendukuri, D. C. Pregibon, J. Collins, and T. A. Hatton, Nat. Mater. 5, 365 (2006).
[Crossref]

Cui, Z.

Y. F. Chen, J. R. Tao, and Z. Cui, Microelectron. Eng. 78-79, 612 (2005).
[Crossref]

Dasgupta, K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, and K. Dasgupta, Sens. Actuators A 147, 150 (2008).
[Crossref]

Delaire, J. A.

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[Crossref]

Dendukuri, D.

D. Dendukuri, D. C. Pregibon, J. Collins, and T. A. Hatton, Nat. Mater. 5, 365 (2006).
[Crossref]

Ding, M.

Dragic, P. D.

Fang, Y. F.

Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
[Crossref]

Farrell, G.

Fasano, A.

Feng, X. H.

X. H. Feng, H. Y. Tam, and W. H. Chung, Opt. Commun. 263, 295 (2006).
[Crossref]

Fernandes, L. A.

Gangopadhyay, T. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, and K. Dasgupta, Sens. Actuators A 147, 150 (2008).
[Crossref]

Gao, Y.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
[Crossref]

Giessen, H.

Gissibl, T.

Grenier, J. R.

Grobnic, D.

Haque, M.

Hatton, T. A.

D. Dendukuri, D. C. Pregibon, J. Collins, and T. A. Hatton, Nat. Mater. 5, 365 (2006).
[Crossref]

He, X. N.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
[Crossref]

Herman, P. R.

Khan, L.

W. Yuan, L. Khan, and D. J. Webb, Opt. Express 19, 1971 (2011).
[Crossref]

Lee, K. K.

Li, Y. L.

Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
[Crossref]

Li, Z. Y.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

Z. Y. Li, C. R. Liao, J. Song, Y. Wang, and F. Zhu, Photon. Res. 4, 197 (2016).
[Crossref]

Liao, C. R.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

Z. Y. Li, C. R. Liao, J. Song, Y. Wang, and F. Zhu, Photon. Res. 4, 197 (2016).
[Crossref]

Mahjouri-Samani, M.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
[Crossref]

Majumder, M.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, and K. Dasgupta, Sens. Actuators A 147, 150 (2008).
[Crossref]

Mariampillai, A.

Markos, C.

Marques, C. A. F.

C. A. F. Marques, P. Antunes, P. Mergo, and D. J. Webb, IEEE Photon. Technol. Lett. 29, 500 (2017).
[Crossref]

Mergo, P.

C. A. F. Marques, P. Antunes, P. Mergo, and D. J. Webb, IEEE Photon. Technol. Lett. 29, 500 (2017).
[Crossref]

Mihailov, S. J.

Nakatani, K.

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[Crossref]

Nielsen, K.

Pedersen, J. K. M.

Pregibon, D. C.

D. Dendukuri, D. C. Pregibon, J. Collins, and T. A. Hatton, Nat. Mater. 5, 365 (2006).
[Crossref]

Rasmussen, H.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 29, 575 (2017).
[Crossref]

Rasmussen, H. K.

Schmid, M.

Semenova, Y.

Shen, J.

H. Zou, S. S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).
[Crossref]

Song, J.

Standish, B. A.

Stefani, A.

Tam, H. Y.

X. H. Feng, H. Y. Tam, and W. H. Chung, Opt. Commun. 263, 295 (2006).
[Crossref]

Tang, J.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

Tang, S. W.

Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
[Crossref]

Tao, J. R.

Y. F. Chen, J. R. Tao, and Z. Cui, Microelectron. Eng. 78-79, 612 (2005).
[Crossref]

Wang, J.

Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
[Crossref]

Wang, L.

Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
[Crossref]

Wang, P. F.

Wang, Y.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

Z. Y. Li, C. R. Liao, J. Song, Y. Wang, and F. Zhu, Photon. Res. 4, 197 (2016).
[Crossref]

Wanger, S.

Webb, D. J.

C. A. F. Marques, P. Antunes, P. Mergo, and D. J. Webb, IEEE Photon. Technol. Lett. 29, 500 (2017).
[Crossref]

W. Yuan, L. Khan, and D. J. Webb, Opt. Express 19, 1971 (2011).
[Crossref]

Woyessa, G.

Wu, Q.

Wu, S. S.

H. Zou, S. S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).
[Crossref]

Xiong, W.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
[Crossref]

Yang, V. X.

Yuan, W.

W. Yuan and A. Stefani, IEEE Photon. Technol. Lett. 24, 401 (2012).
[Crossref]

W. Yuan, L. Khan, and D. J. Webb, Opt. Express 19, 1971 (2011).
[Crossref]

Zhang, Z.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

Zhou, Y. S.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
[Crossref]

Zhu, F.

Zou, H.

H. Zou, S. S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).
[Crossref]

Chem. Rev. (2)

H. Zou, S. S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).
[Crossref]

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[Crossref]

IEEE Photon. J. (1)

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, and Z. Y. Li, IEEE Photon. J. 9, 7101109 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (3)

W. Yuan and A. Stefani, IEEE Photon. Technol. Lett. 24, 401 (2012).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 29, 575 (2017).
[Crossref]

C. A. F. Marques, P. Antunes, P. Mergo, and D. J. Webb, IEEE Photon. Technol. Lett. 29, 500 (2017).
[Crossref]

Lab Chip (1)

Y. L. Li, Y. F. Fang, J. Wang, L. Wang, and S. W. Tang, Lab Chip 16, 4406 (2016).
[Crossref]

Light Sci. Appl. (1)

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, and M. Mahjouri-Samani, Light Sci. Appl. 1, e6 (2012).
[Crossref]

Microelectron. Eng. (1)

Y. F. Chen, J. R. Tao, and Z. Cui, Microelectron. Eng. 78-79, 612 (2005).
[Crossref]

Nat. Mater. (1)

D. Dendukuri, D. C. Pregibon, J. Collins, and T. A. Hatton, Nat. Mater. 5, 365 (2006).
[Crossref]

Opt. Commun. (1)

X. H. Feng, H. Y. Tam, and W. H. Chung, Opt. Commun. 263, 295 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (2)

Optica (1)

Photon. Res. (1)

Sens. Actuators A (1)

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, and K. Dasgupta, Sens. Actuators A 147, 150 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the microprinted PFBG in a ST.
Fig. 2.
Fig. 2. (a) ST was spliced between two SMFs, and (b) a pair of grooves were drilled using a FS laser. (c) Polymer structure was then microprinted in the ST using MPP. (d) Any PR remaining in the ST was cleaned using an acetone and isopropyl alcohol mixture.
Fig. 3.
Fig. 3. SEM images of three PFBGs with waveguide widths of (a) 1810, (b) 2360, and (c) 4680 nm. The transmission spectra for the three PFBGs are shown in (d).
Fig. 4.
Fig. 4. Transmission and reflection spectrum for the PFBG.
Fig. 5.
Fig. 5. Reflection spectrum for the PW-based F-P interferometer. The inset image shows a schematic diagram of this F-P interferometer.
Fig. 6.
Fig. 6. (a) Simulated relationship between a Bragg resonance wavelength and grating period. (b) Measured transmission spectrum and simulated mode field (LP01 and LP11) for the two dips.
Fig. 7.
Fig. 7. Bragg wavelength shift evolution of the PFBG as the RH increased from 30% to 90%.
Fig. 8.
Fig. 8. (a) Spectral transmission evolution of the PFBG as the temperature increased from 24°C to 40°C. (b) Dip wavelength versus temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR=λ22nL,
mλb=2nΛ,