Abstract

We design an optical feedback network making use of machine learning (ML) techniques and demonstrate via simulations its ability to correct for the effects of turbulent propagation on optical modes. This artificial neural network scheme relies only on measuring the intensity profile of the distorted modes, making the approach simple and robust. The network results in the generation of various mode profiles at the transmitter that, after propagation through turbulence, closely resemble the desired target mode. The corrected optical mode profiles at the receiver are found to be nearly identical to the desired profiles, with near-zero mean square error indices. We are hopeful that the present results combining the fields of ML and optical communications will greatly enhance the robustness of free-space optical links.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator

Qinghua Tian, Zhe Li, Kang Hu, Lei Zhu, Xiaolong Pan, Qi Zhang, Yongjun Wang, Feng Tian, Xiaoli Yin, and Xiangjun Xin
Opt. Express 26(21) 27849-27864 (2018)

Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication

Jin Li, Min Zhang, Danshi Wang, Shaojun Wu, and Yueying Zhan
Opt. Express 26(8) 10494-10508 (2018)

Mode detection of misaligned orbital angular momentum beams based on convolutional neural network

Qingsong Zhao, Shiqi Hao, Yong Wang, Lei Wang, Xiongfeng Wan, and Chenlu Xu
Appl. Opt. 57(35) 10152-10158 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription