Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient terahertz anti-reflection properties of metallic anti-dot structures

Not Accessible

Your library or personal account may give you access

Abstract

We report the use of micrometer-sized copper (Cu) anti-dot structures as a novel terahertz (THz) anti-reflection coating (ARC) material and their superior performance over conventionally used metallic (Cu) thin films. Cu anti-dot structures of two different thicknesses (7 and 10 nm) with varying anti-dot diameters (100, 200, and 300 μm, inter-anti-dot separation fixed at 100 μm) are deposited on silicon substrates by RF magnetron sputtering and e-beam evaporation. The anti-reflection performance of these samples is studied in the frequency range of 0.3–2.2 THz. While continuous metallic (Cu) thin film minimizes the Fabry–Perot (FP) peak, it also suppresses the primary transmission peak, reducing the advantage due to the former effect. On the contrary, the anti-dot arrays reduce both the absolute amplitude of the FP peak and the amplitude ratio (AR) of the FP peak to the primary peak, making them a superior material for ARC applications. The AR can be further manipulated by varying the anti-dot size. A universal conductivity phase-matching condition, which is a prerequisite for the disappearance of the FP peak, is observed in these samples. The enhanced anti-reflection performance promotes these anti-dot structures as an efficient terahertz ARC material.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Robust terahertz polarizers with high transmittance at selected frequencies through Si wafer bonding technologies

Ting-Yang Yu, Nai-Chen Chi, Hsin-Cheng Tsai, Shiang-Yu Wang, Chih-Wei Luo, and Kuan-Neng Chen
Opt. Lett. 42(23) 4917-4920 (2017)

Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy

Yiwen Sun, Shengxin Yang, Pengju Du, Fei Yan, Junle Qu, Zexuan Zhu, Jian Zuo, and Cunlin Zhang
Opt. Express 25(3) 1723-1731 (2017)

Measurable lower limit of thin film conductivity with parallel plate waveguide terahertz time domain spectroscopy

Manjakavahoaka Razanoelina, Shohei Ohashi, Iwao Kawayama, Hironaru Murakami, Annick F. Dégardin, Alain J. Kreisler, and Masayoshi Tonouchi
Opt. Lett. 42(15) 3056-3059 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.