Abstract

We report on the experimental demonstration of improved lateral resolution in stimulated emission depletion (STED) microscopy using an annular depletion beam configuration. A tight and finely tuned doughnut focal spot can be created by annular vortex illumination. Its application in STED microscopy for enhanced lateral resolution is systematically investigated by imaging 40 nm fluorescent beads. An improved resolution with more than 20% reduced effective point spread function of the imaging system determined by the full width at half-maximum compared to that of the conventional STED is achieved. The proposed scheme also demonstrates its resolving capability for biological samples. The principle holds great potential in the research fields of biological superresolution imaging as well as STED-based nanolithography and high-density optical data storage.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination

Won-Sup Lee, Geon Lim, Wan-Chin Kim, Guk-Jong Choi, Han-Wook Yi, and No-Cheol Park
Opt. Express 26(8) 9901-9919 (2018)

Resolution scaling in STED microscopy

Benjamin Harke, Jan Keller, Chaitanya K. Ullal, Volker Westphal, Andreas Schönle, and Stefan W. Hell
Opt. Express 16(6) 4154-4162 (2008)

Time-gating improves the spatial resolution of STED microscopy

Jeffrey R. Moffitt, Christian Osseforth, and Jens Michaelis
Opt. Express 19(5) 4242-4254 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription