Abstract

We report on the experimental demonstration of improved lateral resolution in stimulated emission depletion (STED) microscopy using an annular depletion beam configuration. A tight and finely tuned doughnut focal spot can be created by annular vortex illumination. Its application in STED microscopy for enhanced lateral resolution is systematically investigated by imaging 40 nm fluorescent beads. An improved resolution with more than 20% reduced effective point spread function of the imaging system determined by the full width at half-maximum compared to that of the conventional STED is achieved. The proposed scheme also demonstrates its resolving capability for biological samples. The principle holds great potential in the research fields of biological superresolution imaging as well as STED-based nanolithography and high-density optical data storage.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strategies to maximize the performance of a STED microscope

Silvia Galiani, Benjamin Harke, Giuseppe Vicidomini, Gabriele Lignani, Fabio Benfenati, Alberto Diaspro, and Paolo Bianchini
Opt. Express 20(7) 7362-7374 (2012)

STED microscopy with a supercontinuum laser source

Dominik Wildanger, Eva Rittweger, Lars Kastrup, and Stefan W. Hell
Opt. Express 16(13) 9614-9621 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription