Abstract

Cold atoms trapped in one-dimensional optical lattices and driven to the four-level N configuration are exploited for achieving an electromagnetically induced grating with parity-time-symmetry. This nontrivial grating exhibits unidirectional diffraction patterns, e.g., with incident probe photons diffracted into either negative or positive angles, depending on the sign relation between spatially modulated absorption and dispersion coefficients. Such asymmetric light diffraction is a result of the out-of-phase interplay of amplitude and phase modulations of transmission function and can be easily tuned via optical depth, probe detuning, pump Rabi frequencies, etc.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
PT symmetry via electromagnetically induced transparency

Hui-jun Li, Jian-peng Dou, and Guoxiang Huang
Opt. Express 21(26) 32053-32062 (2013)

Optical 𝒫𝒯-symmetry and 𝒫𝒯-antisymmetry in coherently driven atomic lattices

Xin Wang and Jin-Hui Wu
Opt. Express 24(4) 4289-4298 (2016)

Electromagnetically induced grating in the microwave-driven four-level atomic systems

Rasoul Sadighi-Bonabi, Tayebeh Naseri, and Morteza Navadeh-Toupchi
Appl. Opt. 54(3) 368-377 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription