Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Reducing noise in a Raman quantum memory

Not Accessible

Your library or personal account may give you access

Abstract

Optical quantum memories are an important component of future optical and hybrid quantum technologies. Raman schemes are strong candidates for use with ultrashort optical pulses due to their broad bandwidth; however, the elimination of deleterious four-wave mixing noise from Raman memories is critical for practical applications. Here, we demonstrate a quantum memory using the rotational states of hydrogen molecules at room temperature. Polarization selection rules prohibit four-wave mixing, allowing the storage and retrieval of attenuated coherent states with a mean photon number 0.9 and a pulse duration 175 fs. The 1/e memory lifetime is 85.5 ps, demonstrating a time-bandwidth product of 480 in a memory that is well suited for use with broadband heralded down-conversion and fiber-based photon sources.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Using temperature to reduce noise in quantum frequency conversion

Paulina S. Kuo, Jason S. Pelc, Carsten Langrock, and M. M. Fejer
Opt. Lett. 43(9) 2034-2037 (2018)

Highly efficient optical quantum memory with long coherence time in cold atoms

Y.-W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, and B. C. Buchler
Optica 3(1) 100-107 (2016)

Nonclassical correlations between terahertz-bandwidth photons mediated by rotational quanta in hydrogen molecules

Philip J. Bustard, Jennifer Erskine, Duncan G. England, Josh Nunn, Paul Hockett, Rune Lausten, Michael Spanner, and Benjamin J. Sussman
Opt. Lett. 40(6) 922-925 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.