Abstract

We show the existence of a family of waves that share a common interesting property affecting the way these waves propagate and focus. The waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin “real” and “virtual” waves are related, respectively, to the converging and diverging parts of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle

Jing Liu, Chao Zhang, Yiwu Zong, Honglian Guo, and Zhi-Yuan Li
Photon. Res. 3(5) 265-274 (2015)

Optimizing three-dimensional point spread function in lensless holographic microscopy

Jaromír Běhal and Zdeněk Bouchal
Opt. Express 25(23) 29026-29042 (2017)

Spatially incoherent single channel digital Fourier holography

Roy Kelner and Joseph Rosen
Opt. Lett. 37(17) 3723-3725 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription