Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental demonstration of laser damage caused by interface coupling effects of substrate surface and coating layers

Not Accessible

Your library or personal account may give you access

Abstract

The laser damage resistance of the coatings for high-power laser systems depends greatly on the surface quality of the substrate. In our work, experimental approaches were employed to understand the interface coupling effect of the substrate surface and coatings on the laser resistance of the coatings. A 1064 nm anti-reflection (AR) coating was deposited by an e-beam coater onto fused silica with and without micro-scale pits (structural defects). The micro-scale pits were precisely fabricated by femtosecond laser processing to prevent the emergence of subsurface cracks. Different deposition temperatures were characterized in order to verify the intensity of the interface coupling effect of the substrate and coating layers. Our experimental results indicate that impurities that are introduced in the finishing process, shifted to the substrate surface, and aggregated during the heating process, play a much more crucial role than structural defects (length: 7μm; width: 3μm; depth: 0.8μm) in the laser-induced damage process. By effectively reducing the intensity of the interface coupling effect, the e-beam AR coatings, whose laser-induced damage resistance was closed to the bare substrate, was prepared.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Impact of substrate pits on laser-induced damage performance of 1064-nm high-reflective coatings

Yingjie Chai, Meiping Zhu, Zhengyuan Bai, Kui Yi, Hu Wang, Yun Cui, and Jianda Shao
Opt. Lett. 40(7) 1330-1333 (2015)

Multilayer deformation planarization by substrate pit suturing

Yingjie Chai, Meiping Zhu, Huanbin Xing, Hu Wang, Yun Cui, and Jianda Shao
Opt. Lett. 41(15) 3403-3406 (2016)

Improving laser damage resistance of 355  nm high-reflective coatings by co-evaporated interfaces

Huanbin Xing, Meiping Zhu, Yingjie Chai, Kui Yi, Jian Sun, Yun Cui, and Jianda Shao
Opt. Lett. 41(6) 1253-1256 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.