Abstract

In this Letter, a sparse image reconstruction approach is proposed for three-dimensional (3D) terahertz (THz) surface layer holography by a sharply dwindled amount of frequency samples, without reducing the high quality of the final reconstructed 3D THz images. To avoid the range ambiguity resulting from the reduction of frequency samples, a random step frequency method is adopted to evaluate the rough range profile of the 3D surface layer. With the obtained range profile, a de-ambiguity procedure is proposed to demodulate the sparse echoed data to greatly compress the maximum nonambiguous range and recover all the information for 3D holography image reconstruction. Proof-of-state experiments are performed in 0.2-THz band. The results verify the effectiveness and the efficiency of the sparse imaging scheme for THz surface layer 3D holography.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sparse blind deconvolution for imaging through layered media

Daniel L. Marks, Okan Yurduseven, and David R. Smith
Optica 4(12) 1514-1521 (2017)

Near-field three-dimensional radar imaging techniques and applications

David Sheen, Douglas McMakin, and Thomas Hall
Appl. Opt. 49(19) E83-E93 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription