Abstract

The concept of a layered metasurface constructed from loop nanoantennas for beam scanning in space is explored. Each layer of the metasurface can be envisioned as a shunt impedance sheet designable by modifying the loop configuration cell by cell. The single and concentric loop nanoantennas made of silver provide capacitive and inductive impedances, respectively, with negligible loss at 1.5 μm, managing full control of the beam phase and amplitude. A telecom metasurface for beam scanning in 3D space is presented. The complex structure is modeled with an in-house-developed finite-difference time-domain method considering interactions among elements, in contrast to many designs in which isolated elements are simulated by assuming local periodicity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Huygens’ metasurfaces via the equivalence principle: design and applications

Ariel Epstein and George V. Eleftheriades
J. Opt. Soc. Am. B 33(2) A31-A50 (2016)

Truly achromatic optical metasurfaces: a filter circuit theory-based design

Jierong Cheng and Hossein Mosallaei
J. Opt. Soc. Am. B 32(10) 2115-2121 (2015)

Induced resonant electromagnetic transmission in almost-shorted dual screens

Harry F. Contopanagos
J. Opt. Soc. Am. B 30(4) 874-883 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription