Abstract

This Letter reports on an all-fiber-integrated master-oscillator, power amplifier system at 1.55 μm producing 5-ns, 100-μJ pulses. These pulses are generated at a 100 kHz repetition rate, corresponding to 10 W of average power. The seed source is a low-power, current-modulated, single-frequency, distributed feedback semiconductor laser. System output is obtained from a standard single-mode fiber (Corning SMF-28). Consequently, the beam is truly diffraction limited, which was independently proven by M2 measurements. Further increase of peak power is limited by onset of significant spectral broadening due to nonlinear effects, primarily four-wave mixing. Numerical simulations based on six-level rate equations with full position- and time-dependence were developed to model propagation of pulses through the amplifier chain. This capability allows minimization of the amplified spontaneous emission, which can be directly measured using a fast acousto-optic modulator to gate the pulses.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [CrossRef]
  2. C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
    [CrossRef]
  3. S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
    [CrossRef]
  4. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
    [CrossRef]
  5. G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  6. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, Opt. Lett. 29, 2590 (2004).
    [CrossRef]
  7. C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
    [CrossRef]
  8. E. Petersen, W. Shi, A. Chavez-Pirson, and N. Peyghambarian, Appl. Opt. 51, 531 (2012).
    [CrossRef]
  9. I. Pavlov, E. Ilbey, E. Dulgergil, A. Bayri, and F. O. Ilday, Opt. Express 20, 9471 (2012).
    [CrossRef]
  10. E. Lim, S. Alam, and D. J. Richardson, Opt. Express 20, 18803 (2012).
    [CrossRef]
  11. F. Di Teodoro, M. Savage-Leuchs, and M. Norsen, Electron. Lett. 40, 1525 (2004).
    [CrossRef]
  12. P. Wan, J. Liu, L.-M. Yang, and F. Amzajerdian, Opt. Express 19, 18067 (2011).
    [CrossRef]
  13. B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
    [CrossRef]
  14. M. Karasek, IEEE J. Quantum Electron. 33, 1699 (1997).
    [CrossRef]

2013 (2)

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[CrossRef]

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

2012 (3)

2011 (1)

2010 (2)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
[CrossRef]

2007 (1)

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

2006 (1)

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

2004 (2)

1997 (1)

M. Karasek, IEEE J. Quantum Electron. 33, 1699 (1997).
[CrossRef]

Agger, S.

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Alam, S.

Alegria, C.

Amzajerdian, F.

Bayri, A.

Chatigny, S.

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Chavez-Pirson, A.

Clarkson, W. A.

Codemard, C.

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, Opt. Lett. 29, 2590 (2004).
[CrossRef]

de Sandro, J.-P.

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Di Teodoro, F.

F. Di Teodoro, M. Savage-Leuchs, and M. Norsen, Electron. Lett. 40, 1525 (2004).
[CrossRef]

Dulgergil, E.

Dupriez, P.

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

Engin, D.

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

Farrel, C.

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

Gagnon, E.

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Gupta, S.

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

Hovington, C.

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Ilbey, E.

Ilday, F. O.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[CrossRef]

Jeong, Y.

Karasek, M.

M. Karasek, IEEE J. Quantum Electron. 33, 1699 (1997).
[CrossRef]

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Kimpel, F.

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Lim, E.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[CrossRef]

Litvinovich, S.

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

Liu, J.

Morasse, B.

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Nilson, J.

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

Nilsson, J.

Norsen, M.

F. Di Teodoro, M. Savage-Leuchs, and M. Norsen, Electron. Lett. 40, 1525 (2004).
[CrossRef]

Pavlov, I.

Pearson, G. N.

Petersen, E.

Peyghambarian, N.

Philippov, V.

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, Opt. Lett. 29, 2590 (2004).
[CrossRef]

Poulsen, C.

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Puffenberger, K.

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

Richardson, D. J.

Sahu, J. K.

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, Opt. Lett. 29, 2590 (2004).
[CrossRef]

Savage-Leuchs, M.

F. Di Teodoro, M. Savage-Leuchs, and M. Norsen, Electron. Lett. 40, 1525 (2004).
[CrossRef]

Shi, W.

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[CrossRef]

Utano, R.

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

Wan, P.

Yang, L.-M.

Appl. Opt. (1)

C.R. Physique (1)

C. Codemard, C. Farrel, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilson, C.R. Physique 7, 170 (2006).
[CrossRef]

Electron. Lett. (1)

F. Di Teodoro, M. Savage-Leuchs, and M. Norsen, Electron. Lett. 40, 1525 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Karasek, IEEE J. Quantum Electron. 33, 1699 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

S. Gupta, D. Engin, K. Puffenberger, S. Litvinovich, F. Kimpel, and R. Utano, Proc. SPIE 8876, 88760E (2013).
[CrossRef]

B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Other (1)

G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of energy levels for the Er–Yb codoped fiber.

Fig. 2.
Fig. 2.

Schematic of the experiment setup. BF, bandpass filter; MM, multimode; SM, single-mode; MPC, multiple-port pump-signal combiner; WDM, wavelength division multiplexer; AOM, acousto-optic modulator; and DBFL, distributed feedback laser.

Fig. 3.
Fig. 3.

(a) Measured signal output power as a function of pump power for final stage amplifier. (b) Dependence of beam diameter at the 1/e-level on position, along with fitted M 2 value. Inset: far-field 3D beam profile.

Fig. 4.
Fig. 4.

(a) Temporal profile of the amplified pulse train showing the ASE buildup at 50 kHz, where the vertical axis is not a linear function of power due to extreme saturation of the photodetector to render the ASE signal visible. (b) Variation of the ASE ratio in the amplified signal as a function of repetition rate. Simulation and experimental results are represented by full and empty circles, respectively.

Fig. 5.
Fig. 5.

(a) Measured optical spectra of the seed (dotted line) and amplified pulses at full power (solid line). (b) Temporal profiles of the pulses: Seed pulse generated by the DFBL (dashed line), simulated (dotted line) and experimentally measured (solid line) amplified pulses at full power. (c) Evolution of the average signal (solid line) and pump (dashed line) power along the final-stage fiber amplifier obtained from simulations. Measured signal (downward triangles) and pump (upward triangle) power show the good agreement between simulations and experiments. (d) Simulated evolution of the pulse as it propagates inside of the final-stage amplifier, showing the steepening of the leading edge due to gain depletion.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N ˙ 6 = W 46 ( p ) ( N 4 N 6 ) σ 65 N 6 K tr ( N 6 N 1 N 3 N 4 ) ,
N ˙ 5 = σ 65 N 6 W 54 ( s ) N 5 + W 45 ( s ) N 4 σ 54 N 5 K tr ( N 5 N 1 N 3 N 4 ) ,
N ˙ 3 = W 13 ( p ) ( N 1 N 3 ) + K tr ( N 6 N 1 N 3 N 4 ) σ 32 N 3 + K tr ( N 5 N 1 N 3 N 4 ) ,
N ˙ 2 = σ 32 N 3 W 21 ( s ) N 2 + W 12 ( s ) N 1 σ 21 N 2 ,
N Er = N 1 + N 2 + N 3 ,
N Yb = N 4 + N 5 + N 6 .
W i j ( p , s ) = P ( p , s ) h ν ( p , s ) A eff δ i j

Metrics