Abstract

It is known that core–shell subwavelength nanoparticles consisting of a dielectric shell and a metallic core can simultaneously support electric and magnetic dipolar resonances, which enhance forward scattering and suppress backward scattering. This creates favorable conditions for optical tractor beam applications. Using the generalized Lorenz–Mie theory and Maxwell stress tensor formulation, we demonstrate how optical pulling forces can be induced and optimized by first-order Bessel beams with appropriate polarization. The transverse stability of the core–shell nanoparticle under ambient damping is also verified by linear stability analysis and dynamical simulation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field

Guanghao Rui, Xiaoyan Wang, Bing Gu, Qiwen Zhan, and Yiping Cui
Opt. Express 24(7) 7212-7223 (2016)

Optical forces from evanescent Bessel beams, multiple reflections, and Kerker conditions in magnetodielectric spheres and cylinders

Juan Miguel Auñón and Manuel Nieto-Vesperinas
J. Opt. Soc. Am. A 31(9) 1984-1992 (2014)

Manipulation of resonant metallic nanoparticle using 4Pi focusing system

Xiaoyan Wang, Guanghao Rui, Liping Gong, Bing Gu, and Yiping Cui
Opt. Express 24(21) 24143-24152 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription