Abstract

An imaging algorithm is implemented for tomographically reconstructing contrast maps of the space variant speed of diffuse photon density wavefronts (DPDWFs) propagating in biological tissue-like diffusing media. This speed serves as a novel contrast not previously exploited in the literature. The algorithm employs early photon arrival times (EPATs) extracted from a set of time domain measurements. A relationship between EPATs and the speed of DPDWFs is exploited as the forward model. The forward model and its use in an inverse problem are supported by experimental results. These are carried out for 3D media with tissue-like optical properties. The resulting inverse problem is formulated as a set of algebraic equations and solved within a constrained linear least squares framework. The results indicate that the algorithm provides tomographic information on heterogeneities locations and distributions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge, Inverse Probl. 15, R41 (1999).
    [CrossRef]
  2. S. R. Arridge and W. R. B. Lionheart, Opt. Lett. 23, 882 (1998).
    [CrossRef]
  3. L. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley-Interscience, 2007).
  4. A. H. Hielscher, A. D. Klose, and K. M. Hanson, IEEE Trans. Med. Imaging 18, 262 (1999).
    [CrossRef]
  5. J. Bouza Domínguez and Y. Bérubé-Lauzière, J. Biomed. Opt. 17, 0860121 (2012).
    [CrossRef]
  6. F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, Opt. Express 19, 12843 (2011).
    [CrossRef]
  7. K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
    [CrossRef]
  8. G. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, Opt. Lett. 30, 409 (2005).
    [CrossRef]
  9. N. Valim, J. Brock, and M. Niedre, J. Biomed. Opt. 15, 065006 (2010).
    [CrossRef]
  10. E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, Rev. Sci. Instrum. 83, 063703 (2012).
    [CrossRef]
  11. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (University of Pennsylvania, 1996).
  12. J. Pichette, J. Bouza-Domínguez, and Y. Bérubé-Lauzière, Appl. Opt. 52, 5985 (2013).
    [CrossRef]
  13. R. Berg, S. Andersson-Engels, and S. Svanberg, Proc. SPIE IS11, 397 (1993).
  14. Y. Bérubé-Lauzière and V. Robichaud, Proc. SPIE 6372, 637206 (2006).
    [CrossRef]

2013

2012

J. Bouza Domínguez and Y. Bérubé-Lauzière, J. Biomed. Opt. 17, 0860121 (2012).
[CrossRef]

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, Rev. Sci. Instrum. 83, 063703 (2012).
[CrossRef]

2011

2010

N. Valim, J. Brock, and M. Niedre, J. Biomed. Opt. 15, 065006 (2010).
[CrossRef]

2006

Y. Bérubé-Lauzière and V. Robichaud, Proc. SPIE 6372, 637206 (2006).
[CrossRef]

2005

2000

K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
[CrossRef]

1999

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, IEEE Trans. Med. Imaging 18, 262 (1999).
[CrossRef]

1998

1993

R. Berg, S. Andersson-Engels, and S. Svanberg, Proc. SPIE IS11, 397 (1993).

Andersson-Engels, S.

R. Berg, S. Andersson-Engels, and S. Svanberg, Proc. SPIE IS11, 397 (1993).

Arridge, S. R.

Berg, R.

R. Berg, S. Andersson-Engels, and S. Svanberg, Proc. SPIE IS11, 397 (1993).

Bérubé-Lauzière, Y.

J. Pichette, J. Bouza-Domínguez, and Y. Bérubé-Lauzière, Appl. Opt. 52, 5985 (2013).
[CrossRef]

J. Bouza Domínguez and Y. Bérubé-Lauzière, J. Biomed. Opt. 17, 0860121 (2012).
[CrossRef]

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, Rev. Sci. Instrum. 83, 063703 (2012).
[CrossRef]

Y. Bérubé-Lauzière and V. Robichaud, Proc. SPIE 6372, 637206 (2006).
[CrossRef]

Boas, D. A.

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (University of Pennsylvania, 1996).

Bouza Domínguez, J.

J. Bouza Domínguez and Y. Bérubé-Lauzière, J. Biomed. Opt. 17, 0860121 (2012).
[CrossRef]

Bouza-Domínguez, J.

Brock, J.

N. Valim, J. Brock, and M. Niedre, J. Biomed. Opt. 15, 065006 (2010).
[CrossRef]

Chabrier, R.

Chen, K.

K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
[CrossRef]

Dasari, R.

K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
[CrossRef]

Feld, M.

K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
[CrossRef]

Hanson, K. M.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, IEEE Trans. Med. Imaging 18, 262 (1999).
[CrossRef]

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, IEEE Trans. Med. Imaging 18, 262 (1999).
[CrossRef]

Klose, A. D.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, IEEE Trans. Med. Imaging 18, 262 (1999).
[CrossRef]

Lapointe, E.

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, Rev. Sci. Instrum. 83, 063703 (2012).
[CrossRef]

Lionheart, W. R. B.

Niedre, M.

N. Valim, J. Brock, and M. Niedre, J. Biomed. Opt. 15, 065006 (2010).
[CrossRef]

Nouizi, F.

Ntziachristos, V.

Perelman, L.

K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
[CrossRef]

Pichette, J.

J. Pichette, J. Bouza-Domínguez, and Y. Bérubé-Lauzière, Appl. Opt. 52, 5985 (2013).
[CrossRef]

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, Rev. Sci. Instrum. 83, 063703 (2012).
[CrossRef]

Poulet, P.

Ripoll, J.

Robichaud, V.

Y. Bérubé-Lauzière and V. Robichaud, Proc. SPIE 6372, 637206 (2006).
[CrossRef]

Soubret, A.

Svanberg, S.

R. Berg, S. Andersson-Engels, and S. Svanberg, Proc. SPIE IS11, 397 (1993).

Torregrossa, M.

Turner, G.

Valim, N.

N. Valim, J. Brock, and M. Niedre, J. Biomed. Opt. 15, 065006 (2010).
[CrossRef]

Wang, L.

L. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley-Interscience, 2007).

Wu, H.

L. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley-Interscience, 2007).

Zacharakis, G.

Zhang, Q.

K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
[CrossRef]

Appl. Opt.

IEEE Trans. Med. Imaging

A. H. Hielscher, A. D. Klose, and K. M. Hanson, IEEE Trans. Med. Imaging 18, 262 (1999).
[CrossRef]

Inverse Probl.

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

J. Biomed. Opt.

K. Chen, L. Perelman, Q. Zhang, R. Dasari, and M. Feld, J. Biomed. Opt. 5, 144 (2000).
[CrossRef]

N. Valim, J. Brock, and M. Niedre, J. Biomed. Opt. 15, 065006 (2010).
[CrossRef]

J. Bouza Domínguez and Y. Bérubé-Lauzière, J. Biomed. Opt. 17, 0860121 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. Berg, S. Andersson-Engels, and S. Svanberg, Proc. SPIE IS11, 397 (1993).

Y. Bérubé-Lauzière and V. Robichaud, Proc. SPIE 6372, 637206 (2006).
[CrossRef]

Rev. Sci. Instrum.

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, Rev. Sci. Instrum. 83, 063703 (2012).
[CrossRef]

Other

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (University of Pennsylvania, 1996).

L. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley-Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Top view of the phantom that can accommodate type “A” inclusions (OD=14.7mm, ID=12.35mm), type “B” (OD=9.7mm, ID=7.9mm), and types “D” & “E” (OD=4.95mm, ID=4.05mm).

Fig. 2.
Fig. 2.

EPAT projections for an inclusion in which intralipid concentration was varied; see text for details.

Fig. 3.
Fig. 3.

Partition of a planar section of a cylindrical medium with triangular elements; laser light injected at the red point; detection positions shown in blue. For each measurement, a ray (dotted black) is traced between the corresponding detection position and the laser injection point. Each ray is intersected with the mesh (green) and the distance crossed in each element is computed to be used in the weight matrix.

Fig. 4.
Fig. 4.

(a) DPDWF speed map with inclusion A3 filled with a 124V/V dilution of intralipid (lower speed than the background). (b) EPATs projections for (A); the bumps in the set of projections are due to the presence of the inclusion and the lower speed in it. (c) DPDWF speed map with E5 filled with 112V/V intralipid. (d) DPDWF speed map with deep seated D2 filled with air (higher speed).

Fig. 5.
Fig. 5.

(a) Speed map with inclusions A2 and A3, respectively, filled with 196V/V and 124V/V intralipid. (b) EPATs projections for (a). (c) Speed map with inclusions B1, B2, and E6, respectively, filled with 112V/V, 196V/V and 196V/V intralipid. (d) EPATs projections for (c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ti=k=1Nedikvk=k=1Nedikbk,
t=D·b,
b=argminbj>0,jD·btL2,

Metrics