Abstract

We report on a photonic crystal slab patterned on a 690 nm thick LiNbO3 thin film bonded to SiO2 on lithium niobate substrate. The transmission spectrum is measured and a broad and clear photonic bandgap ranging from 1335 to 1535 nm with a maximum extinction ratio of more than 20 dB is observed. The bandgap is simulated by plane wave expansion and 3D finite-difference time-domain methods. Such a deep and broad bandgap structure can be used to form high-performance photonic devices and circuits on the platform of lithium niobate-on-insulator.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription