Abstract

A method for laser-induced fluorescence (LIF) imaging of formaldehyde (CH2O) that discriminates against the interfering signal from polycyclic aromatic hydrocarbons (PAHs) is presented. This technique uses an interference filter with 11 transmission bands that closely match the most prominent fluorescence features of CH2O upon excitation at 355 nm. The signal increases by a factor of 12 with the multi-band filter compared to a single-band filter. Slight angle-tuning of the filter shifts the transmission maxima to the minima in between the CH2O-LIF features. The pixel-by-pixel difference between the images collected at the two filter angles thus provides CH2O images free of PAH interference, providing the capability for selective single-pulse CH2O-LIF imaging in engine combustion even under fuel-rich conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription