Abstract

We report a novel all-optical approach to generate a binary phase-coded microwave signal based on a cross-polarization modulation effect in a highly nonlinear fiber. The carrier frequency of the binary phase-coded microwave signal is widely tunable. Moreover, the precise π phase shift of the microwave signal is independent of the optical power of the control beam. The proposed approach is theoretically analyzed and experimentally verified. For a proof-of-concept demonstration, the binary phase-coded microwave signals with a carrier frequency of 20 GHz at a coding rate of 5Gb/s and with a carrier frequency of 30 GHz at a coding rate of 7.5Gb/s are experimentally generated. The pulse compression capability of the system is also evaluated. The measured and simulated results fit well with each other.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).
  2. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  3. I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
    [CrossRef]
  4. J. P. Yao, Opt. Commun. 284, 3723 (2011).
    [CrossRef]
  5. H. Chi and J. P. Yao, IEEE Trans. Microw. Theory Tech. 55, 1958 (2007).
    [CrossRef]
  6. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
    [CrossRef]
  7. Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
    [CrossRef]
  8. Z. Cao, J. Yu, L. Chen, and Q. Shu, IEEE Photon. Technol. Lett. 24, 827 (2012).
    [CrossRef]
  9. Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
    [CrossRef]
  10. Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
    [CrossRef]
  11. Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 766 (2013).
    [CrossRef]
  12. L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
    [CrossRef]
  13. W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
    [CrossRef]
  14. W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
    [CrossRef]
  15. W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
    [CrossRef]
  16. Z. Tang, T. Zhang, F. Zhang, and S. Pan, Opt. Lett. 38, 5365 (2013).
    [CrossRef]
  17. Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, Opt. Lett. 32, 745 (2007).
    [CrossRef]

2013

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
[CrossRef]

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 766 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

Z. Tang, T. Zhang, F. Zhang, and S. Pan, Opt. Lett. 38, 5365 (2013).
[CrossRef]

2012

Z. Cao, J. Yu, L. Chen, and Q. Shu, IEEE Photon. Technol. Lett. 24, 827 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
[CrossRef]

2011

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

2007

2005

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

2003

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Bogoni, A.

Cao, Z.

Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
[CrossRef]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Z. Cao, J. Yu, L. Chen, and Q. Shu, IEEE Photon. Technol. Lett. 24, 827 (2012).
[CrossRef]

Chandra, K.

Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
[CrossRef]

Chen, L.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Z. Cao, J. Yu, L. Chen, and Q. Shu, IEEE Photon. Technol. Lett. 24, 827 (2012).
[CrossRef]

Cheng, T. H.

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J. P. Yao, IEEE Trans. Microw. Theory Tech. 55, 1958 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Dong, Y.

Ghelfi, P.

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

He, H.

Hu, W.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Koonen, A. M. J.

Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
[CrossRef]

Kuang, W.

Laghezza, F.

Li, F.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Li, M.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

Li, W.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
[CrossRef]

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Li, Z.

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

Liu, J. G.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Lu, C.

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

Pan, S.

Pan, S. L.

Scotti, F.

Shu, Q.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Z. Cao, J. Yu, L. Chen, and Q. Shu, IEEE Photon. Technol. Lett. 24, 827 (2012).
[CrossRef]

Skolnik, M. L.

M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).

Tang, Q.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Tang, Z.

Tangdiongga, E.

Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
[CrossRef]

van den Boom, H. P. A.

Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
[CrossRef]

Wang, H.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
[CrossRef]

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Wang, L. X.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

Wang, Q.

Wang, Y.

Weiner, A. M.

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

Wen, Y. J.

Yao, J. P.

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J. P. Yao, IEEE Trans. Microw. Theory Tech. 55, 1958 (2007).
[CrossRef]

Yu, J.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

Z. Cao, J. Yu, L. Chen, and Q. Shu, IEEE Photon. Technol. Lett. 24, 827 (2012).
[CrossRef]

Zhang, F.

Zhang, T.

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Zhang, Y. M.

Zheng, J. Y.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Zhu, N. H.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

IEEE J. Sel. Areas Commun.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, IEEE J. Sel. Areas Commun. 31, 804 (2013).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

IEEE Photon. J.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Z. Cao, H. P. A. van den Boom, E. Tangdiongga, K. Chandra, and A. M. J. Koonen, IEEE Photon. Technol. Lett. 25, 737 (2013).
[CrossRef]

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Z. Cao, J. Yu, L. Chen, and Q. Shu, IEEE Photon. Technol. Lett. 24, 827 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

H. Chi and J. P. Yao, IEEE Trans. Microw. Theory Tech. 55, 1958 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

Opt. Lett.

Other

M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed method.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Measured optical spectra at (a) the output of the optical coupler, (b) the output of the Pol, and (c) the output of the EDFA2.

Fig. 4.
Fig. 4.

(a) Noncoded microwave signal at the carrier frequency of 20 GHz. (b) Binary phase-coded microwave signal at the carrier frequency of 20 GHz and a coding rate of 5Gb/s with a fixed pattern of “0101.” (c) Extracted phase information from Fig. 4(b).

Fig. 5.
Fig. 5.

(a) Binary phase-coded microwave signal at the carrier frequency of 20 GHz with a fixed pattern of “0000 1111 0101 1001” and a speed of 5Gb/s. (b) Autocorrelation of the measured waveform shown in Fig. 5(a). (c) Simulated autocorrelation. The insets show the zoom-in views of the autocorrelations.

Fig. 6.
Fig. 6.

(a) Noncoded microwave signal at the carrier frequency of 30 GHz. (b) Binary phase-coded microwave signal at the carrier frequency of 30 GHz and a coding rate of 7.5Gb/s with a fixed pattern of “0101.” (c) Extracted phase information from Fig. 6(b).

Fig. 7.
Fig. 7.

(a) Binary phase-coded microwave signal at the carrier frequency of 30 GHz with a fixed pattern of “0000 1111 0101 1001” and a speed of 7.5Gb/s. (b) Autocorrelation of the measured waveform shown in Fig. 7(a). (c) Simulated autocorrelation. The insets show the zoom-in views of the autocorrelations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Pc(t)={Pc1[1+cos(ωmt)]+Pc2[1+c(t)]}/2,
ns(t)=ns,l+2ns,nPc(t)nf(t)=nf,l+2nf,nPc(t),
φs(t)=kpLns(t)=αs+βsPc(t)φf(t)=kpLnf(t)=αf+βfPc(t),
Ep(t)=[Es(t)Ef(t)]=12exp(jωpt)[exp[jφs(t)]exp[jφf(t)]],
E(t)=12exp(jωpt){exp[jφs(t)]+exp[jφf(t)+jφ0]}=exp[jΦ(t)]cos[φs(t)φf(t)φ02]=exp[jΦ(t)]·cos[γ1cos(ωmt)+γ2c(t)+2(γ1+γ2)+αsαfφ02],
E(t)=exp[jΦ(t)]sin[γ1cos(ωmt)+γ2c(t)].
E(t)=exp[jΦ(t)]{2cos(γ2)·n=1(1)nJ2n1(γ1)cos[(2n1)ωmt]+c(t)sin(γ2)[J0(γ1)+2n=1(1)nJ2n(γ1)cos(2nωmt)]}.
E(t)=exp[jΦ(t)][2cos(γ2)J1(γ1)cos(ωmt)+J0(γ1)c(t)sin(γ2)].
im(t)E(t)·E*(t)c(t)J0(γ1)J1(γ1)sin(2γ2)cos(ωmt).

Metrics