Abstract

We present a novel, hybrid approach for time domain fluorescence tomography that efficiently combines lifetime multiplexing using late-arriving or asymptotic photons, with the high spatial resolution capability of early photon tomography. We also show that a decay amplitude-based asymptotic approach is superior to direct inversion of late-arriving photons for tomographic lifetime imaging within turbid media. The hybrid reconstruction approach is experimentally shown to recover fluorescent inclusions separated as close as 1.4 mm, with improved resolution and reduced cross talk compared to just using early photons or the asymptotic approach alone.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, V. Venugopal, X. Intes, Biomed. Opt. Express 2, 871 (2011).
    [CrossRef]
  2. R. W. Holt, K. M. Tichauer, H. Dehghani, B. W. Pogue, F. Leblond, Opt. Lett. 37, 2559 (2012).
    [CrossRef]
  3. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
    [CrossRef]
  4. J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
    [CrossRef]
  5. F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, Opt. Express 14, 7109 (2006).
    [CrossRef]
  6. S. Lam, F. Lesage, X. Intes, Opt. Express 13, 2263 (2005).
    [CrossRef]
  7. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, B. J. Bacskai, Opt. Express 14, 12255 (2006).
    [CrossRef]
  8. S. B. Raymond, D. A. Boas, B. J. Bacskai, A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
    [CrossRef]
  9. W. L. Rice, S. Hou, A. T. N. Kumar, Opt. Lett. 38, 2038 (2013).
    [CrossRef]
  10. A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, D. A. Boas, IEEE Trans. Med. Imaging 27, 1152 (2008).
    [CrossRef]
  11. S. R. Arridge, J. C. Schotland, Inverse Probl. 25, 123010 (2009).
    [CrossRef]
  12. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (Bristol: Institute of Physics Publishing, 1998), pp. 98–136, 299–302.
  13. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, A. K. Dunn, Opt. Lett. 30, 3347 (2005).
    [CrossRef]
  14. D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn, Opt. Express 10, 159 (2002).
    [CrossRef]
  15. R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
    [CrossRef]

2013

2012

2011

2010

S. B. Raymond, D. A. Boas, B. J. Bacskai, A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

2009

S. R. Arridge, J. C. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

2008

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, D. A. Boas, IEEE Trans. Med. Imaging 27, 1152 (2008).
[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

2006

2005

2002

1997

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

1995

R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
[CrossRef]

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

Arridge, S. R.

S. R. Arridge, J. C. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

Bacskai, B. J.

S. B. Raymond, D. A. Boas, B. J. Bacskai, A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, D. A. Boas, IEEE Trans. Med. Imaging 27, 1152 (2008).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, B. J. Bacskai, Opt. Express 14, 12255 (2006).
[CrossRef]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, A. K. Dunn, Opt. Lett. 30, 3347 (2005).
[CrossRef]

Bertero, M.

M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (Bristol: Institute of Physics Publishing, 1998), pp. 98–136, 299–302.

Boas, D. A.

Boccacci, P.

M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (Bristol: Institute of Physics Publishing, 1998), pp. 98–136, 299–302.

Boverman, G.

Byrd, R. H.

R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
[CrossRef]

Chen, J.

Culver, J. P.

Dasari, R. R.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

Dehghani, H.

Dunn, A. K.

Feld, M. S.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Gao, F.

Holt, R. W.

Hou, S.

Intes, X.

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

Kumar, A. T. N.

W. L. Rice, S. Hou, A. T. N. Kumar, Opt. Lett. 38, 2038 (2013).
[CrossRef]

S. B. Raymond, D. A. Boas, B. J. Bacskai, A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, D. A. Boas, IEEE Trans. Med. Imaging 27, 1152 (2008).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, B. J. Bacskai, Opt. Express 14, 12255 (2006).
[CrossRef]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, A. K. Dunn, Opt. Lett. 30, 3347 (2005).
[CrossRef]

Lam, S.

Leblond, F.

Lesage, F.

Lu, P.

R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
[CrossRef]

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

Nocedal, J.

R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
[CrossRef]

Ntziachristos, V.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

Perelman, L.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Pogue, B. W.

Raymond, S. B.

S. B. Raymond, D. A. Boas, B. J. Bacskai, A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, D. A. Boas, IEEE Trans. Med. Imaging 27, 1152 (2008).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, B. J. Bacskai, Opt. Express 14, 12255 (2006).
[CrossRef]

Rice, W. L.

Schotland, J. C.

S. R. Arridge, J. C. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

Skoch, J.

Stott, J. J.

Tanikawa, Y.

Tichauer, K. M.

Venugopal, V.

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

Wu, J.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Yamada, Y.

Zhao, H.

Zhu, C.

R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
[CrossRef]

Biomed. Opt. Express

IEEE Trans. Med. Imaging

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, D. A. Boas, IEEE Trans. Med. Imaging 27, 1152 (2008).
[CrossRef]

Inverse Probl.

S. R. Arridge, J. C. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

J. Biomed. Opt.

S. B. Raymond, D. A. Boas, B. J. Bacskai, A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. USA

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008).
[CrossRef]

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

SIAM J. Sci. Comput.

R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
[CrossRef]

Other

M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (Bristol: Institute of Physics Publishing, 1998), pp. 98–136, 299–302.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Fluorescence TSPF for a 2 cm thick diffusive slab with a fluorescent inclusion (τ=1ns) at the center. The inset shows the FVHM of the reconstructed yield for individual time gates. SVD spectra of the DTD weight matrix are shown for (b) one to eight early gates [indicated as blue circles in (a)] and (c) one to eight late gates [red circles in (a)]. The gates were stacked in order of decreasing intensity for both cases.

Fig. 2.
Fig. 2.

Comparison of reconstructions obtained from applying ATD and DTD to the same set of 12 late time gates. Red and green corresponds to the yield distributions for 0.87 and 1.27 ns, respectively. The true locations of the inclusions are shown in gray. In the first two rows, the X–Z plots are generated by assigning the recovered yields to the red (0.87 ns) and green (1.27 ns) components of the RGB colormap. Each distribution is thresholded at 50% of its maximum. The bottom row shows line plots for ATD (dashed line) and DTD (solid line) along the x axis at the depth of the inclusion. The computation time for ATD was 21 times shorter than that for DTD.

Fig. 3.
Fig. 3.

Comparison of reconstructions obtained from DTD applied to four early gates and the HTD method. The display parameters are consistent with (Fig. 2). The bottom row shows line plots for HTD (dashed line) and DTD (solid line) along the x axis at the depth of the inclusion.

Fig. 4.
Fig. 4.

Experimental reconstruction of fluorophores with lifetime contrast in a dish phantom. X–Z and line plots for CW, ATD, DTD (three early and three late gates), and HTD combining ATD and DTD (three early gates) are shown. Red and green correspond to the yield distributions for 0.87 and 1.27 ns, respectively. Each distribution is thresholded at 70% of its maximum. The bottom row shows line plots for HTD (dashed line) and ATD (solid line) along the x axis at the depth of the inclusion.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Uf(rs,rd,t)=n=1NΩWn(rs,rd,r,t)ηn(r)d3r,
y=Wη,
ηDTD=WT(WWT+λI)1y.
y=tτDAW¯η,
ηATD=W¯T(W¯W¯T+λI)1Ay.
[y(t1)y(t2)a1aN]=[W1(t1)WN(t1)W1(t2)WN(t2)W¯1000000W¯N][η1ηN].
ηHTD=argminη0YWηC12+λη2,

Metrics