Abstract

We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), Vol. 50, pp. 137–184.
  2. J. T. Robinson, S. F. Preble, M. Lipson, Opt. Express 14, 10588 (2006).
    [CrossRef]
  3. C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
    [CrossRef]
  4. J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
    [CrossRef]
  5. D. C. Kohlgraf-Owens, S. Sukhov, A. Dogariu, Phys. Rev. A 84, 011807 (2011).
    [CrossRef]
  6. A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, S. I. Bozhevolnyi, Opt. Express 19, 2972 (2011).
    [CrossRef]
  7. R. Innes, J. Sambles, Solid State Commun. 56, 493 (1985).
    [CrossRef]
  8. J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
    [CrossRef]
  9. M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
    [CrossRef]
  10. P. G. Datskos, N. V. Lavrik, S. Rajic, Rev. Sci. Instrum. 75, 1134 (2004).
    [CrossRef]
  11. J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
    [CrossRef]
  12. J. Knight, G. Cheung, F. Jacques, T. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef]
  13. G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
    [CrossRef]
  14. In the topographic map, a linear slope appears to the right of the disk edge, whereas in reality the disk has a sharp edge. This artifact is due to the fact that the velocity at which the tip can move down is limited by the piezo and by the feedback mechanism which control the tip’s height, leading to a linear height variation rather than an instantaneous drop.
  15. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
    [CrossRef]
  16. C. Maetzler, “Matlab functions for mie scattering and absorption, version 2,” (University of Bern, Bern, Switzerland, 2002).
  17. C. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. H. Bethe, Phys. Rev. 66, 163 (1944).
    [CrossRef]

2013 (1)

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

2012 (2)

J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

2011 (5)

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

D. C. Kohlgraf-Owens, S. Sukhov, A. Dogariu, Phys. Rev. A 84, 011807 (2011).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, S. I. Bozhevolnyi, Opt. Express 19, 2972 (2011).
[CrossRef]

2006 (1)

2004 (1)

P. G. Datskos, N. V. Lavrik, S. Rajic, Rev. Sci. Instrum. 75, 1134 (2004).
[CrossRef]

1997 (1)

1995 (1)

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

1985 (1)

R. Innes, J. Sambles, Solid State Commun. 56, 493 (1985).
[CrossRef]

1944 (1)

H. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Alekseev, P. A.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Andersen, T. B.

Arinero, R.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Arocas, J.

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

Baranov, A. N.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Berthet, J.-P.

J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
[CrossRef]

Bethe, H.

H. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Birks, T.

Bohren, C.

C. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bonakdar, A.

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Bouevitch, O.

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Bouhelier, A.

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

Bozhevolnyi, S. I.

Cheung, G.

Chipouline, A.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

Colas des Francs, G.

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

Datskos, P. G.

P. G. Datskos, N. V. Lavrik, S. Rajic, Rev. Sci. Instrum. 75, 1134 (2004).
[CrossRef]

Dazzi, A.

J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
[CrossRef]

Dereux, A.

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, S. I. Bozhevolnyi, Opt. Express 19, 2972 (2011).
[CrossRef]

Dey, D.

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Dogariu, A.

D. C. Kohlgraf-Owens, S. Sukhov, A. Dogariu, Phys. Rev. A 84, 011807 (2011).
[CrossRef]

Dunaevskiy, M. S.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Etrich, C.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

Fish, G.

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Gelfand, R.

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Girard, P.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Glotin, F.

J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
[CrossRef]

Gosciniak, J.

Hassan, K.

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

Huffman, D. R.

C. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Innes, R.

R. Innes, J. Sambles, Solid State Commun. 56, 493 (1985).
[CrossRef]

Jacques, F.

Janunts, N.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

Käsebier, T.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

Klein, A.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

Kley, E.-B.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

Knight, J.

Kohlgraf-Owens, D. C.

D. C. Kohlgraf-Owens, S. Sukhov, A. Dogariu, Phys. Rev. A 84, 011807 (2011).
[CrossRef]

Kohoutek, J.

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Kokotov, S.

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Kumar, A.

Lavrik, N. V.

P. G. Datskos, N. V. Lavrik, S. Rajic, Rev. Sci. Instrum. 75, 1134 (2004).
[CrossRef]

Lederer, F.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

Lewis, A.

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Lieberman, K.

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Liebsch, M.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

Lipson, M.

Maetzler, C.

C. Maetzler, “Matlab functions for mie scattering and absorption, version 2,” (University of Bern, Bern, Switzerland, 2002).

Markey, L.

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, S. I. Bozhevolnyi, Opt. Express 19, 2972 (2011).
[CrossRef]

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

Memis, O. G.

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Mohseni, H.

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Monakhov, A. M.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Novotny, L.

L. Novotny, in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), Vol. 50, pp. 137–184.

Ortega, J.-M.

J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
[CrossRef]

Palanker, D.

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Pertsch, T.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

Prazeres, R.

J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
[CrossRef]

Preble, S. F.

Rajic, S.

P. G. Datskos, N. V. Lavrik, S. Rajic, Rev. Sci. Instrum. 75, 1134 (2004).
[CrossRef]

Robinson, J. T.

Sambles, J.

R. Innes, J. Sambles, Solid State Commun. 56, 493 (1985).
[CrossRef]

Schmidt, C.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

Sklar, A.

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Sukhov, S.

D. C. Kohlgraf-Owens, S. Sukhov, A. Dogariu, Phys. Rev. A 84, 011807 (2011).
[CrossRef]

Teissier, R.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Titkov, A. N.

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Tünnermann, A.

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

Turovets, I.

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

Appl. Phys. B (1)

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Appl. Phys. B 104, 503 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

J.-M. Ortega, F. Glotin, R. Prazeres, J.-P. Berthet, A. Dazzi, Appl. Phys. Lett. 101, 141117 (2012).
[CrossRef]

J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas des Francs, J. Arocas, L. Markey, A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
[CrossRef]

M. S. Dunaevskiy, P. A. Alekseev, A. N. Baranov, A. M. Monakhov, R. Teissier, R. Arinero, P. Girard, A. N. Titkov, Appl. Phys. Lett. 103, 053120 (2013).
[CrossRef]

Nano Lett. (1)

J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni, Nano Lett. 11, 3378 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

H. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. A (2)

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012).
[CrossRef]

D. C. Kohlgraf-Owens, S. Sukhov, A. Dogariu, Phys. Rev. A 84, 011807 (2011).
[CrossRef]

Rev. Sci. Instrum. (2)

P. G. Datskos, N. V. Lavrik, S. Rajic, Rev. Sci. Instrum. 75, 1134 (2004).
[CrossRef]

G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
[CrossRef]

Solid State Commun. (1)

R. Innes, J. Sambles, Solid State Commun. 56, 493 (1985).
[CrossRef]

Other (4)

In the topographic map, a linear slope appears to the right of the disk edge, whereas in reality the disk has a sharp edge. This artifact is due to the fact that the velocity at which the tip can move down is limited by the piezo and by the feedback mechanism which control the tip’s height, leading to a linear height variation rather than an instantaneous drop.

C. Maetzler, “Matlab functions for mie scattering and absorption, version 2,” (University of Bern, Bern, Switzerland, 2002).

C. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

L. Novotny, in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), Vol. 50, pp. 137–184.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the experimental setup for thermal mapping of WGM in microdisk resonators. A WGM mode is excited by evanescent coupling through a bent, tapered fiber. A microthermocouple probe, consisting of a platinum-filled glass pipette with a gold coating, is scanned over the disk surface. Heating of the Pt/Au contact at the tip apex generates a Seebeck voltage. The corresponding current (linked via the tip’s resistance Ri) is amplified by a transimpedance amplifier to generate the output voltage UA, which is recorded by the SPM controller. (b) Scanning electron micrograph of a microthermocouple probe.

Fig. 2.
Fig. 2.

Comparison of WGM images obtained with different SPM methods and overlaid on a topographic map of the sample. (a)–(c) Synchronously obtained images of a microdisk resonator: (a) thermovoltage, (b) transmission, and (c) reflection through the excitation taper. (d) Collection-mode SNOM image of two coupled microdisk resonators (data from [3]). (e) Temperature profile (converted from the thermovoltage) along the intensity maxima (dashed line) in (a).

Fig. 3.
Fig. 3.

(a) Thermovoltage map of a WGM with two radial maxima, overlaid on the topographic image. (b),(c) Synchronously measured (b) transmission and (c) reflection through the excitation taper.

Fig. 4.
Fig. 4.

(a) Radially symmetric finite element simulation of the temperature distribution within and around a microdisk resonator. (b) Comparison of radial profiles of the simulated temperature (blue dashed line), the simulated optical intensity (red dashed–dotted line) and the measured temperature signal (green line) along the dashed line in (a). All profiles have been normalized to the range between 0 (background signal/ambient temperature) and 1. The vertical dashed line marks the disk edge. (c) Simulation of the temperature with excitation of a mode with two radial maxima (cf. Fig. 3), (d) same as in (b), but for the higher-order mode shown in (c).

Fig. 5.
Fig. 5.

(a) Schematic of the experimental setup for relaxation-time measurements. A laser is focused onto the thermocouple probe. The laser is switched on and off repeatedly. (b) Measured output signal (red curve) compared to the optical signal (blue curve).

Metrics