Abstract

Differential group delay measurements of a fiber-based dispersion compensation module under different controlled temperature variations experience long birefringence relaxation times (>10h) in response to temperature changes. These are interpreted here qualitatively with a stress strain behavioral model based on silica’s viscoelastic property.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991).
    [CrossRef]
  2. M. Brodsky, J. C. Martinez, N. J. Frigo, and A. Sirenko, “Dispersion compensation module as a polarization hinge,” 31st European Conference on Optical Communication, September 25–29, 2005, Vol. 3, pp. 335–336.
  3. M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, J. Lightwave Technol. 24, 4584 (2006).
    [CrossRef]
  4. T. Geisler and P. Kristensen, “Polarization properties of DCMs: thermal variations,” in Optical Fiber Communication Conference, San Diego, California, 2009, paper OWD3.
  5. D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).
  6. M. Reimer and D. Yevick, Opt. Lett. 31, 2399 (2006).
    [CrossRef]
  7. M. Brodsky, P. Magill, and N. J. Frigo, Photon. Technol. Lett. 16, 209 (2004).
    [CrossRef]
  8. G. W. Scherer, Relaxation in Glass and Composites (Wiley, 1986).
  9. S. C. Rashleigh and R. Ulrich, Opt. Lett. 5, 354 (1980).
    [CrossRef]
  10. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [CrossRef]
  11. D. Gupta, A. Kumar, and K. Thyagarajan, Opt. Commun. 263, 36 (2006).
    [CrossRef]
  12. A. Galtarossa and L. Palmieri, Opt. Lett. 25, 384 (2000).
    [CrossRef]
  13. A. Yariv and P. Yeh, Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  14. C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007), Chap. 11.
  15. G. W. Morey, The Properties of Glass, 1st ed. (Waverly, 1938).
  16. C. J. Phillips, Glass: The Miracle Maker, 2nd ed. (Pitman, 1941).

2006

D. Gupta, A. Kumar, and K. Thyagarajan, Opt. Commun. 263, 36 (2006).
[CrossRef]

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

M. Reimer and D. Yevick, Opt. Lett. 31, 2399 (2006).
[CrossRef]

M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, J. Lightwave Technol. 24, 4584 (2006).
[CrossRef]

2004

M. Brodsky, P. Magill, and N. J. Frigo, Photon. Technol. Lett. 16, 209 (2004).
[CrossRef]

2000

1991

C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991).
[CrossRef]

1980

Boehm, S.

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

Boroditsky, M.

Brodsky, M.

M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, J. Lightwave Technol. 24, 4584 (2006).
[CrossRef]

M. Brodsky, P. Magill, and N. J. Frigo, Photon. Technol. Lett. 16, 209 (2004).
[CrossRef]

M. Brodsky, J. C. Martinez, N. J. Frigo, and A. Sirenko, “Dispersion compensation module as a polarization hinge,” 31st European Conference on Optical Communication, September 25–29, 2005, Vol. 3, pp. 335–336.

Chen, C.-L.

C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007), Chap. 11.

Chraplyvy, A. R.

C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991).
[CrossRef]

Eickhoff, W.

Fishman, D. A.

C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991).
[CrossRef]

Frigo, N. J.

M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, J. Lightwave Technol. 24, 4584 (2006).
[CrossRef]

M. Brodsky, P. Magill, and N. J. Frigo, Photon. Technol. Lett. 16, 209 (2004).
[CrossRef]

M. Brodsky, J. C. Martinez, N. J. Frigo, and A. Sirenko, “Dispersion compensation module as a polarization hinge,” 31st European Conference on Optical Communication, September 25–29, 2005, Vol. 3, pp. 335–336.

Galtarossa, A.

Geisler, T.

T. Geisler and P. Kristensen, “Polarization properties of DCMs: thermal variations,” in Optical Fiber Communication Conference, San Diego, California, 2009, paper OWD3.

Glatty, R.

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

Goelz, D.

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

Gupta, D.

D. Gupta, A. Kumar, and K. Thyagarajan, Opt. Commun. 263, 36 (2006).
[CrossRef]

Kristensen, P.

T. Geisler and P. Kristensen, “Polarization properties of DCMs: thermal variations,” in Optical Fiber Communication Conference, San Diego, California, 2009, paper OWD3.

Kumar, A.

D. Gupta, A. Kumar, and K. Thyagarajan, Opt. Commun. 263, 36 (2006).
[CrossRef]

Leppla, R.

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

Magill, P.

M. Brodsky, P. Magill, and N. J. Frigo, Photon. Technol. Lett. 16, 209 (2004).
[CrossRef]

Martinez, J. C.

M. Brodsky, J. C. Martinez, N. J. Frigo, and A. Sirenko, “Dispersion compensation module as a polarization hinge,” 31st European Conference on Optical Communication, September 25–29, 2005, Vol. 3, pp. 335–336.

Meissner, P.

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

Morey, G. W.

G. W. Morey, The Properties of Glass, 1st ed. (Waverly, 1938).

Palmieri, L.

Phillips, C. J.

C. J. Phillips, Glass: The Miracle Maker, 2nd ed. (Pitman, 1941).

Poole, C. D.

C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991).
[CrossRef]

Rashleigh, S. C.

Reimer, M.

Salaun, S.

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

Scherer, G. W.

G. W. Scherer, Relaxation in Glass and Composites (Wiley, 1986).

Sirenko, A.

M. Brodsky, J. C. Martinez, N. J. Frigo, and A. Sirenko, “Dispersion compensation module as a polarization hinge,” 31st European Conference on Optical Communication, September 25–29, 2005, Vol. 3, pp. 335–336.

Thyagarajan, K.

D. Gupta, A. Kumar, and K. Thyagarajan, Opt. Commun. 263, 36 (2006).
[CrossRef]

Tkach, R. W.

C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991).
[CrossRef]

Tur, M.

Ulrich, R.

Yariv, A.

A. Yariv and P. Yeh, Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Yeh, P.

A. Yariv and P. Yeh, Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Yevick, D.

J. Lightwave Technol.

Opt. Commun.

D. Gupta, A. Kumar, and K. Thyagarajan, Opt. Commun. 263, 36 (2006).
[CrossRef]

Opt. Lett.

Photon. Technol. Lett.

C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991).
[CrossRef]

M. Brodsky, P. Magill, and N. J. Frigo, Photon. Technol. Lett. 16, 209 (2004).
[CrossRef]

Proc. SPIE

D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).

Other

G. W. Scherer, Relaxation in Glass and Composites (Wiley, 1986).

M. Brodsky, J. C. Martinez, N. J. Frigo, and A. Sirenko, “Dispersion compensation module as a polarization hinge,” 31st European Conference on Optical Communication, September 25–29, 2005, Vol. 3, pp. 335–336.

T. Geisler and P. Kristensen, “Polarization properties of DCMs: thermal variations,” in Optical Fiber Communication Conference, San Diego, California, 2009, paper OWD3.

A. Yariv and P. Yeh, Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007), Chap. 11.

G. W. Morey, The Properties of Glass, 1st ed. (Waverly, 1938).

C. J. Phillips, Glass: The Miracle Maker, 2nd ed. (Pitman, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Setup block diagram, showing signals and laser flows.

Fig. 2.
Fig. 2.

Reproducible DGD under similar circumstances.

Fig. 3.
Fig. 3.

DGD versus time at different temperatures (8 h per temperature).

Fig. 4.
Fig. 4.

Voigt element in series with a spring to model the viscoelasticity of glass [8].

Fig. 5.
Fig. 5.

(a) DGD (measured and simulated) and temperature versus time. (b) An expanded view of the second heating cycle.

Tables (1)

Tables Icon

Table 1. Physical Parameters Characterizing the Fiber-Based DCM (SI Units)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

εD(t)=0tσ(t)ηVe(tt)/τDdt,
εE(t)=σ(t)3K1,
τD=ηV/(3K2),
1K=1K1+1K2.
εtotal=εf+εE+εD.
εE(t)=ε0εf(t)εD(t)=ε0αicl(T(t)T0)0tσ(t)ηVe(tt)/τDdt,
εE(t)=ε0αicl(T(t)T0)0t3K1ηVεE(t)e(tt)/τDdt.
εE(t)=[ε0αicl(T(t)T0)]3K1ηV0t[ε0αicl(T(t)T0)]e(tt)/τrdt,
τr=ηV3(K1+K2).

Metrics