Abstract

In this work, we present a simple fabrication process enabling the integration of a subwavelength amorphous silicon layer inside optical fibers by means of the arc discharge technique. To assess our method, we have fabricated a compact in-line Fabry–Perot interferometer consisting of a thin (<1μm) a-Si:H layer completely embedded within a standard single-mode optical fiber. The device exhibits low loss (1.3 dB) and high interference fringe visibility (80%) both in reflection and transmission, due to the high refractive index contrast between silica and a-Si:H. A high linear temperature sensitivity up to 106pm/°C is demonstrated in the range 120°C–400°C. The proposed interferometer is attractive for point monitoring applications as well as for ultrahigh-temperature sensing in harsh environments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription