Abstract

We demonstrate all-optical ultrahigh-speed swept-source optical coherence tomography (OCT) based on amplified optical time-stretch (AOT). Such an inertia-free wavelength-swept mechanism, via group velocity dispersion, enables us to realize OCT with an A-scan rate well above MHz. More importantly, the key significance of AOT-OCT is its simultaneous broadband Raman amplification during the time-stretch process–greatly enhancing the detection sensitivity compared with prior attempts to apply optical time-stretch to OCT. Here, we report on an AOT-OCT system which is operated at an A-scan rate of 7.14 MHz, a superior roll-off performance (>2mm/dB), a record-high sensitivity of time-stretch-based OCT (>80dB) with a broadband gain bandwidth of 80 nm, which results in an axial resolution of 15μm. Our AOT-OCT system is thus able to, for the first time to the best of our knowledge, perform time-stretch-based OCT of biological tissue in vivo. It represents a major step forward in utilizing AOT as an alternative for achieving practical MHz OCT, without any long-term mechanical stability concerns as in typical swept-source OCT or bypassing the speed limitation of the image sensor employed in spectral-domain OCT.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Biological and Medical Physics, Biomedical Engineering) (Springer, 2008).
  2. H. C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, Biomed. Opt. Express 4, 1236 (2013).
    [CrossRef]
  3. L. An, P. Li, G. P. Lan, D. Malchow, and R. K. K. Wang, Biomed. Opt. Express 4, 245 (2013).
    [CrossRef]
  4. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
    [CrossRef]
  5. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 30, 3159 (2005).
    [CrossRef]
  6. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, Opt. Express 18, 14685 (2010).
    [CrossRef]
  7. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, Biomed. Opt. Express 4, 1890 (2013).
    [CrossRef]
  8. T. H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. S. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable, and J. G. Fujimoto, Biomed. Opt. Express 4, 1119 (2013).
    [CrossRef]
  9. D. R. Solli, J. Chou, and B. Jalali, Nat. Photonics 2, 48 (2008).
    [CrossRef]
  10. K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
    [CrossRef]
  11. J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
    [CrossRef]
  12. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azana, Opt. Express 15, 4597 (2007).
    [CrossRef]
  13. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
    [CrossRef]
  14. K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 031106 (2008).
    [CrossRef]
  15. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, Opt. Express 20, 19612 (2012).
    [CrossRef]
  16. S. Moon and D. Y. Kim, Opt. Express 14, 11575 (2006).
    [CrossRef]
  17. C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier Academic, 2005).
  18. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
    [CrossRef]
  19. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, Opt. Lett. 38, 673 (2013).
    [CrossRef]
  20. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  21. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, Opt. Lett. 36, 160 (2011).
    [CrossRef]
  22. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998).
    [CrossRef]
  23. A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
    [CrossRef]

2013

2012

2011

2010

2009

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

2008

K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 031106 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, Nat. Photonics 2, 48 (2008).
[CrossRef]

2007

Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azana, Opt. Express 15, 4597 (2007).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

2006

2005

1998

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998).
[CrossRef]

Agrawal, G.

C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier Academic, 2005).

Aguirre, A. D.

Ahn, T. J.

An, L.

Azana, J.

Biedermann, B. R.

Bouma, B. E.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 30, 3159 (2005).
[CrossRef]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Cable, A. E.

Capewell, D.

Cheung, K. K. Y.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, Nat. Photonics 2, 48 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Connolly, J. L.

Desjardins, A. E.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

Drexler, W.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Biological and Medical Physics, Biomedical Engineering) (Springer, 2008).

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Eigenwillig, C. M.

Fard, A.

Fu, G.

Fujimoto, J. G.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Goda, K.

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, Opt. Express 20, 19612 (2012).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 031106 (2008).
[CrossRef]

Grulkowski, I.

Headley, C.

C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier Academic, 2005).

Heim, P. J. S.

Hornegger, J.

Huber, R.

Jalali, B.

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, Opt. Express 20, 19612 (2012).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, Nat. Photonics 2, 48 (2008).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 031106 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Jayaraman, V.

Jiang, J.

Kampik, A.

Kieffer, J. C.

Kim, D. Y.

Klein, T.

Kraus, M. F.

Kubota, H.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998).
[CrossRef]

Lan, G. P.

Lee, H. C.

Li, P.

Liu, J. J.

Malchow, D.

Malik, O.

Mashimo, H.

Moon, S.

Nakazawa, M.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998).
[CrossRef]

Neubauer, A.

Oh, W. Y.

Park, Y.

Potsaid, B.

Quach, A.

Reznicek, L.

Sheikine, Y.

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 031106 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, Nat. Photonics 2, 48 (2008).
[CrossRef]

Suter, M. J.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

Tamura, K.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998).
[CrossRef]

Tao, Y. K.

Tearney, G. J.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 30, 3159 (2005).
[CrossRef]

Tsai, T. H.

Tsia, K. K.

K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, Opt. Lett. 36, 160 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

Vakoc, B. J.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

Wang, R. K. K.

Wieser, W.

Wojtkowski, M.

Wong, K. K. Y.

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998).
[CrossRef]

Yun, S. H.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 30, 3159 (2005).
[CrossRef]

Zhang, C.

Zhou, C.

Zhou, Y.

Appl. Phys. Lett.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 031106 (2008).
[CrossRef]

Biomed. Opt. Express

IEEE Trans. Med. Imaging

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009).
[CrossRef]

Nat. Photonics

D. R. Solli, J. Chou, and B. Jalali, Nat. Photonics 2, 48 (2008).
[CrossRef]

Nature

K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. A

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Biological and Medical Physics, Biomedical Engineering) (Springer, 2008).

C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier Academic, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the AOT-OCT. MLFL, mode-locked fiber laser; PC, polarization controller; AM, amplitude modulator; EDFA, erbium-doped fiber amplifier; OBPF, optical band pass filter; HNLF, highly nonlinear fiber; WDM, wavelength-division multiplexer; DCF, dispersion compensation fiber; BOA, booster optical amplifier; DL, delay line; OC, optical circulator; VC, variable coupler; PD, photodetector.

Fig. 2.
Fig. 2.

(a) Raw spectra after the AOT is captured by an OSA (red line) and by a real-time oscilloscope (blue line). (b) The spectrum (magenta line) corresponds to the calibrated temporal scan by the dispersion curve.

Fig. 3.
Fig. 3.

(a) Time-stretch interferograms at a rate of 7.14 MHz captured in real-time. The inset shows the zoom-in view of one period. (b) Time-stretch spectra with different amplification scenarios: (red line) with both Raman amplification and BOA, (blue line) with BOA only, (black line) with Raman amplification only, and (magenta line) without any amplification. (c) Measured PSFs with (red line) and without (blue line) Raman amplification before the BOA.

Fig. 4.
Fig. 4.

Roll-off performance of the AOT-OCT. PSFs measured at different depths in air.

Fig. 5.
Fig. 5.

Effect of the Raman amplification on the AOT-OCT image. (a) An image of the anterior segment of the fish eye with BOA only. (b) The same part of the fish eye with both Raman amplification and BOA.

Fig. 6.
Fig. 6.

AOT-OCT images of (a) the anterior segment of the fish eye and (b) a human finger print. represents a major step forward in utilizing AOT as an attractive alternative for achieving practical MHz OCT.

Metrics