Abstract

Spectroscopic methods are established tools for nonintrusive measurements of flow velocity. However, those methods are either restricted by measuring pointwise or with low measurement rates of several hertz. To investigate fast unsteady phenomena, e.g., in sprays, volumetric (3D) measurement techniques with kHz rate are required. For this purpose, a spectroscopic technique is realized with a power amplified, frequency modulated laser and an Mfps high-speed camera. This allows fast continuous planar measurements of the velocity. Volumetric data is finally obtained by slewing the laser light sheet in depth with an oscillating microelectromechanical systems (MEMS) scanner. As a result, volumetric velocity measurements are obtained for 256×128×25 voxels over 14.4mm×7.2mm×6.5mm with a repetition rate of 1 kHz, which allows the investigation of unsteady phenomena in sprays such as transients and local velocity oscillations. The respective measurement capabilities are demonstrated by experiments. Hence, a significant progress regarding the data rate was achieved in spectroscopy by using the Mfps high-speed camera, which enables new application fields such as the analysis of fast unsteady phenomena.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, Opt. Express 21, 1152 (2013).
    [CrossRef]
  2. I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, Exp. Fluids 52, 555 (2012).
    [CrossRef]
  3. Z.-M. Cao, K. Nishino, S. Mizuno, and K. Torii, Exp. Fluids 29, S211 (2000).
    [CrossRef]
  4. J. F. Meyers, Meas. Sci. Technol. 6, 769 (1995).
    [CrossRef]
  5. R. Schlüßler, J. Czarske, and A. Fischer, Opt. Lasers Eng. 54, 93 (2014).
    [CrossRef]
  6. C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
    [CrossRef]
  7. D. S. Nobes, H. D. Ford, and R. P. Tatam, Exp. Fluids 36, 3 (2004).
    [CrossRef]
  8. X. Li and L. Ma, Opt. Express 22, 4768 (2014).
    [CrossRef]
  9. L. David, T. Jardin, P. Braud, and A. Farcy, Exp. Fluids 52, 857 (2012).
    [CrossRef]
  10. A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
    [CrossRef]
  11. C. Brücker, D. Hess, and J. Kitzhofer, Meas. Sci. Technol. 24, 024001 (2013).
    [CrossRef]
  12. R. Wellander, M. Richter, and M. Aldén, Opt. Express 19, 21508 (2011).
    [CrossRef]
  13. A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
    [CrossRef]
  14. A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, Appl. Opt. 47, 3941 (2008).
    [CrossRef]
  15. D. A. Steck, Cesium D Line Data (revision 2.1.4), http://steck.us/alkalidata (2010).

2014 (2)

R. Schlüßler, J. Czarske, and A. Fischer, Opt. Lasers Eng. 54, 93 (2014).
[CrossRef]

X. Li and L. Ma, Opt. Express 22, 4768 (2014).
[CrossRef]

2013 (3)

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, Opt. Express 21, 1152 (2013).
[CrossRef]

C. Brücker, D. Hess, and J. Kitzhofer, Meas. Sci. Technol. 24, 024001 (2013).
[CrossRef]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

2012 (2)

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, Exp. Fluids 52, 555 (2012).
[CrossRef]

L. David, T. Jardin, P. Braud, and A. Farcy, Exp. Fluids 52, 857 (2012).
[CrossRef]

2011 (1)

2008 (2)

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, Appl. Opt. 47, 3941 (2008).
[CrossRef]

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
[CrossRef]

2005 (1)

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

2004 (1)

D. S. Nobes, H. D. Ford, and R. P. Tatam, Exp. Fluids 36, 3 (2004).
[CrossRef]

2000 (1)

Z.-M. Cao, K. Nishino, S. Mizuno, and K. Torii, Exp. Fluids 29, S211 (2000).
[CrossRef]

1995 (1)

J. F. Meyers, Meas. Sci. Technol. 6, 769 (1995).
[CrossRef]

Aldén, M.

Arndt, C. M.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, Exp. Fluids 52, 555 (2012).
[CrossRef]

Barricau, P.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

Beversdorff, M.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

Boxx, I.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, Exp. Fluids 52, 555 (2012).
[CrossRef]

Braud, P.

L. David, T. Jardin, P. Braud, and A. Farcy, Exp. Fluids 52, 857 (2012).
[CrossRef]

Brücker, C.

C. Brücker, D. Hess, and J. Kitzhofer, Meas. Sci. Technol. 24, 024001 (2013).
[CrossRef]

Büttner, L.

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, Appl. Opt. 47, 3941 (2008).
[CrossRef]

Cao, Z.-M.

Z.-M. Cao, K. Nishino, S. Mizuno, and K. Torii, Exp. Fluids 29, S211 (2000).
[CrossRef]

Carter, C. D.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, Exp. Fluids 52, 555 (2012).
[CrossRef]

Caswell, A. W.

Czarske, J.

R. Schlüßler, J. Czarske, and A. Fischer, Opt. Lasers Eng. 54, 93 (2014).
[CrossRef]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, Appl. Opt. 47, 3941 (2008).
[CrossRef]

David, L.

L. David, T. Jardin, P. Braud, and A. Farcy, Exp. Fluids 52, 857 (2012).
[CrossRef]

Dierksheide, U.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
[CrossRef]

Eggert, M.

Elsinga, G. E.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
[CrossRef]

Farcy, A.

L. David, T. Jardin, P. Braud, and A. Farcy, Exp. Fluids 52, 857 (2012).
[CrossRef]

Fischer, A.

R. Schlüßler, J. Czarske, and A. Fischer, Opt. Lasers Eng. 54, 93 (2014).
[CrossRef]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, Appl. Opt. 47, 3941 (2008).
[CrossRef]

Ford, H. D.

D. S. Nobes, H. D. Ford, and R. P. Tatam, Exp. Fluids 36, 3 (2004).
[CrossRef]

Geisler, R.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
[CrossRef]

Gord, J. R.

Haufe, D.

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

Hess, D.

C. Brücker, D. Hess, and J. Kitzhofer, Meas. Sci. Technol. 24, 024001 (2013).
[CrossRef]

Jansen, U.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

Jardin, T.

L. David, T. Jardin, P. Braud, and A. Farcy, Exp. Fluids 52, 857 (2012).
[CrossRef]

Kitzhofer, J.

C. Brücker, D. Hess, and J. Kitzhofer, Meas. Sci. Technol. 24, 024001 (2013).
[CrossRef]

Klinner, J.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

König, J.

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

Lempereur, C.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

Li, X.

Ma, L.

Meier, W.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, Exp. Fluids 52, 555 (2012).
[CrossRef]

Meyers, J. F.

J. F. Meyers, Meas. Sci. Technol. 6, 769 (1995).
[CrossRef]

Mizuno, S.

Z.-M. Cao, K. Nishino, S. Mizuno, and K. Torii, Exp. Fluids 29, S211 (2000).
[CrossRef]

Müller, H.

Nishino, K.

Z.-M. Cao, K. Nishino, S. Mizuno, and K. Torii, Exp. Fluids 29, S211 (2000).
[CrossRef]

Nobes, D. S.

D. S. Nobes, H. D. Ford, and R. P. Tatam, Exp. Fluids 36, 3 (2004).
[CrossRef]

Plemmons, D. H.

Quest, J.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

Richter, M.

Roy, S.

Sanders, S. T.

Scarano, F.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
[CrossRef]

Schlüßler, R.

R. Schlüßler, J. Czarske, and A. Fischer, Opt. Lasers Eng. 54, 93 (2014).
[CrossRef]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

Schröder, A.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
[CrossRef]

Stockhausen, G.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

Tatam, R. P.

D. S. Nobes, H. D. Ford, and R. P. Tatam, Exp. Fluids 36, 3 (2004).
[CrossRef]

Torii, K.

Z.-M. Cao, K. Nishino, S. Mizuno, and K. Torii, Exp. Fluids 29, S211 (2000).
[CrossRef]

Wellander, R.

Willert, C.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

Appl. Opt. (1)

Exp. Fluids (6)

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, Exp. Fluids 39, 420 (2005).
[CrossRef]

D. S. Nobes, H. D. Ford, and R. P. Tatam, Exp. Fluids 36, 3 (2004).
[CrossRef]

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, Exp. Fluids 52, 555 (2012).
[CrossRef]

Z.-M. Cao, K. Nishino, S. Mizuno, and K. Torii, Exp. Fluids 29, S211 (2000).
[CrossRef]

L. David, T. Jardin, P. Braud, and A. Farcy, Exp. Fluids 52, 857 (2012).
[CrossRef]

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, Exp. Fluids 44, 305 (2008).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, J. Acoust. Soc. Am. 134, 1102 (2013).
[CrossRef]

Meas. Sci. Technol. (2)

C. Brücker, D. Hess, and J. Kitzhofer, Meas. Sci. Technol. 24, 024001 (2013).
[CrossRef]

J. F. Meyers, Meas. Sci. Technol. 6, 769 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

R. Schlüßler, J. Czarske, and A. Fischer, Opt. Lasers Eng. 54, 93 (2014).
[CrossRef]

Other (1)

D. A. Steck, Cesium D Line Data (revision 2.1.4), http://steck.us/alkalidata (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Measurement principle of FM-DGV. The Doppler frequency fD depends on the illumination direction i⃗, the observation direction o⃗, the laser center wavelength λ, and the velocity v⃗ of the scattering particles.

Fig. 2.
Fig. 2.

Evaluating the ratio of the first- and second-order harmonics for measuring the Doppler frequency.

Fig. 3.
Fig. 3.

Measurement setup using a frequency modulated, power-amplified diode laser for illumination, a high-speed camera for planar imaging, and an mirror oscillating with 1 kHz for depth scanning.

Fig. 4.
Fig. 4.

Measured mean flow field of the free jet flow (measurement time 1 s).

Fig. 5.
Fig. 5.

Measured mean (left) and sample instantaneous (right) flow field of the spray during a constant spray actuation (measurement time 500 and 1 ms, respectively).

Fig. 6.
Fig. 6.

Time series of a single pixel from the spray core region measured with 1 and 0.25 kHz, respectively, which shows the transient at the end of the spray actuation.

Fig. 7.
Fig. 7.

Volumetric times series at the end of the spray actuation measured with a temporal resolution of 4 ms, which shows the transient velocity decrease.

Fig. 8.
Fig. 8.

Amplitude spectrum of a velocity time series with 500 subsequent samples from the spray center during spray actuation, which reveals local velocity oscillations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ak=2Nn=0N1s(nfs)cos(2πfmfskn+φk),k=1,2,

Metrics