Abstract

Recording of digital holograms of a weak signal [0.44 counts per second (cps)] hidden below the detector’s noise (21 cps) is investigated by employing the high dynamic range of a photon-counting detector. Recording conditions are discussed in terms of the most important holographic measures, namely, the fringe visibility (or contrast) and signal-to-noise ratio (SNR), and in relation to the main holographic parameters. Theoretically evaluated curves are tested by recording holograms for a wide range of the parameter values. We found that (i) the optimum set of holographic parameters can be determined for a harsh signal conditions, (ii) increasing the visibility does not necessarily improve the more important SNR, and (iii) in cases of nearly constant visibility, the SNR clearly reveals differences in the quality of holographic recordings.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef]
  2. L. Miccio, A. Finizio, R. Publisi, D. Balduzzi, A. Galli, and P. Ferraro, Biomed. Opt. Express 2, 331 (2011).
    [CrossRef]
  3. N. Demoli, D. Vukicevic, and M. Torzynski, Opt. Express 11, 767 (2003).
    [CrossRef]
  4. P. Picart, J. Leval, D. Mounier, and S. Gougeon, Opt. Lett. 28, 1900 (2003).
    [CrossRef]
  5. N. Demoli, Opt. Express 14, 2117 (2006).
    [CrossRef]
  6. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, Opt. Express 21, 5379 (2013).
    [CrossRef]
  7. O. A. Skydan, F. Lilley, M. J. Lalor, and D. R. Burton, Appl. Opt. 42, 5302 (2003).
    [CrossRef]
  8. M. Gross and M. Atlan, Opt. Lett. 32, 909 (2007).
    [CrossRef]
  9. M. Lesaffre, N. Verrier, and M. Gross, Appl. Opt. 52, A81 (2013).
    [CrossRef]
  10. S. Tisa, A. Tosi, and F. Zappa, Opt. Express 15, 2873 (2007).
    [CrossRef]
  11. H.-M. Qu, Y.-F. Zhang, Z.-J. Ji, and Q. Chen, Laser Phys. Lett. 10, 105201 (2013).
    [CrossRef]
  12. M. Yamamoto, H. Yamamoto, and Y. Hayasaki, Opt. Lett. 34, 1081 (2009).
    [CrossRef]
  13. N. Demoli, Opt. Quantum Electron. 45, 861 (2013).
    [CrossRef]
  14. M. Stipčević, Appl. Opt. 48, 1705 (2009).
    [CrossRef]
  15. M. Stipčević, H. Skenderović, and D. Gracin, Opt. Express 18, 17448 (2010).
    [CrossRef]
  16. N. Demoli, H. Halaq, K. Šariri, M. Torzynski, and D. Vukicevic, Opt. Express 17, 15842 (2009).
    [CrossRef]

2013 (4)

2011 (1)

2010 (1)

2009 (3)

2007 (2)

2006 (1)

2005 (1)

2003 (3)

Atlan, M.

Balduzzi, D.

Bianco, V.

Burton, D. R.

Chen, Q.

H.-M. Qu, Y.-F. Zhang, Z.-J. Ji, and Q. Chen, Laser Phys. Lett. 10, 105201 (2013).
[CrossRef]

Colomb, T.

Cuche, E.

Demoli, N.

Depeursinge, C.

Emery, Y.

Ferraro, P.

Finizio, A.

Galli, A.

Gougeon, S.

Gracin, D.

Gross, M.

Halaq, H.

Hayasaki, Y.

Ji, Z.-J.

H.-M. Qu, Y.-F. Zhang, Z.-J. Ji, and Q. Chen, Laser Phys. Lett. 10, 105201 (2013).
[CrossRef]

Lalor, M. J.

Lesaffre, M.

Leval, J.

Lilley, F.

Locatelli, M.

Magistretti, P. J.

Marquet, P.

Meucci, R.

Miccio, L.

Mounier, D.

Paturzo, M.

Pelagotti, A.

Picart, P.

Poggi, P.

Publisi, R.

Pugliese, E.

Qu, H.-M.

H.-M. Qu, Y.-F. Zhang, Z.-J. Ji, and Q. Chen, Laser Phys. Lett. 10, 105201 (2013).
[CrossRef]

Rappaz, B.

Šariri, K.

Skenderovic, H.

Skydan, O. A.

Stipcevic, M.

Tisa, S.

Torzynski, M.

Tosi, A.

Verrier, N.

Vukicevic, D.

Yamamoto, H.

Yamamoto, M.

Zappa, F.

Zhang, Y.-F.

H.-M. Qu, Y.-F. Zhang, Z.-J. Ji, and Q. Chen, Laser Phys. Lett. 10, 105201 (2013).
[CrossRef]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Laser Phys. Lett. (1)

H.-M. Qu, Y.-F. Zhang, Z.-J. Ji, and Q. Chen, Laser Phys. Lett. 10, 105201 (2013).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

N. Demoli, Opt. Quantum Electron. 45, 861 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fringe visibility as a function of K ¯ .

Fig. 2.
Fig. 2.

Fringe visibility as a function of K n ¯ .

Fig. 3.
Fig. 3.

Scheme of the setup. SMF, single mode fiber; O, object; PhC, photon counter; ND1-3, neutral density filters; BCo, beam collimator; XY, motorized stage.

Fig. 4.
Fig. 4.

Fitting curves to experimental data for K ¯ = 1 (left) and K ¯ = 10 (right). The exposure times goes from τ = 0.1 s (up) to τ = 100 s (down), as indicated in graphs.

Fig. 5.
Fig. 5.

Visibility as a function of K ¯ . Circles represent the values calculated from experimental measurements and the solid curve represents the least-squares fit.

Fig. 6.
Fig. 6.

Transparent object used in recording holograms.

Tables (2)

Tables Icon

Table 1. Measures V and SNR Calculated from Experimental Values

Tables Icon

Table 2. Comparison of the Reconstructed Images for the Given Range of Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x , t ) = I 0 ( x ) + 2 K ( x ) I s ( x ) cos [ φ ( x , t ) ] ,
E ( x , τ ) = I s ( x ) [ 1 + K ( x ) + K n ( x ) ] τ + 2 I s ( x ) K ( x ) τ cos [ φ ( x ) ] ψ n ( x , τ ) ,
E FIT ( x ) = A + B · cos ( C x + D ) ,
V = 2 K ¯ 1 + K ¯ + K n ¯ ψ n ( τ ) ¯ ,
SNR = 2 I s ¯ K ¯ τ σ ( τ ) ψ n ( τ ) ¯ .

Metrics