Abstract

A new methodology for the development of miniature photoacoustic trace gas sensors using 3D printing is presented. A near-infrared distributed feedback (DFB) laser is used together with a polymer-based gas cell, off-the-shelf fiber optic collimators, and a microelectromechanical system (MEMS) microphone to measure acetylene at 1532.83 nm. The resonance behavior of the miniature gas cell is analyzed using a theoretical and experimental approach, with a measured resonance frequency of 15.25 kHz and a Q-factor of 15. A minimum normalized noise equivalent absorption of 4.5×109Wcm1Hz1/2 is shown together with a 3σ detection limit of 750 parts per billion (ppb) for signal averaging times of 35 s. The fiber-coupled delivery and miniature cost-effective cell design allows for use in multipoint and remote detection applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing

Qiang Wang, Zhen Wang, Jun Chang, and Wei Ren
Opt. Lett. 42(11) 2114-2117 (2017)

Miniature fiber-tip photoacoustic spectrometer for trace gas detection

Yingchun Cao, Wei Jin, Hoi Lut Ho, and Jun Ma
Opt. Lett. 38(4) 434-436 (2013)

A versatile integrating sphere based photoacoustic sensor for trace gas monitoring

Mikael Lassen, David Balslev-Clausen, Anders Brusch, and Jan C. Petersen
Opt. Express 22(10) 11660-11669 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription