Abstract

Dye-doped jelly-like gelatin is a thick-layer self-developing photosensitive medium that allows single and multiplexed volume phase holograms to be successfully recorded using pulsed laser radiation. In this Letter, we present a method for multiplexed recording of volume holograms in a dye-doped jelly-like gelatin, which provides significant increase in their diffraction efficiency. The method is based on the recovery of the photobleached dye molecule concentration in the hologram recording zone of gel, thanks to molecule diffusion from other unexposed gel areas. As an example, an optical recording of a multiplexed hologram consisting of three superimposed Bragg gratings with mean values of the diffraction efficiency and angular selectivity of 75% and 21, respectively, is demonstrated by using the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).
  2. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  3. H. N. Yum, P. R. Hemmer, A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, Opt. Lett. 30, 3012 (2005).
    [CrossRef]
  4. Y. Luo, E. de Leon, J. Castro, J. Lee, J. K. Barton, R. K. Kostuk, and G. Barbastathis, Opt. Lett. 36, 1290 (2011).
    [CrossRef]
  5. T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
    [CrossRef]
  6. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).
  7. E. Fernandez, M. Ortuno, S. Gallego, A. Marquez, C. Garcia, A. Belendez, and I. Pascual, Appl. Opt. 47, 4448 (2008).
    [CrossRef]
  8. I. Naydenova, ed., Holograms—Recording Materials and Applications (InTech, 2011).
  9. J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Intern. 2012, 803439 (2012).
  10. O. V. Andreeva, O. V. Bandyuk, and A. P. Kushnarenko, J. Opt. Technol. 73, 625 (2006).
    [CrossRef]
  11. A. V. Veniaminov and U. V. Mahilny, Opt. Spectrosc. 115, 906 (2013).
    [CrossRef]
  12. Yu. N. Denisyuk, N. M. Ganzherli, I. A. Maurer, and S. A. Pisarevskaya, Opt. Spectrosc. 86, 922 (1999).
  13. T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and S. A. Ryzhechkin, in Abstract of the XVI International Conference on Coherent and Nonlinear Optics, Moscow, 1998, paper CHhu27.
  14. T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Nice, France, 2000, paper K79.
  15. T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and A. P. Stupak, J. Appl. Spectrosc. 68, 124 (2001).
  16. T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and V. A. Zaporozhchenko, in Proceedings of the 15th Belarussian–Lithuanian Seminar on Lasers and Optical Nonlinearity, Minsk, 2002, pp. 150–156.
  17. T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Lasers, Applications and Technologies (LAT), Moscow, 2002, paper LME9.
  18. T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Tech. Phys. Lett. 32, 945 (2006).
    [CrossRef]
  19. T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Proc. SPIE 6731, 67312R (2006).
  20. T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Munich, 2009, paper CC.P.7.THU.
  21. F. H. Mok, G. W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef]
  22. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  23. J. H. Hong, P. Yeh, D. Psaltis, and D. Brady, Opt. Lett. 15, 344 (1990).
    [CrossRef]

2014 (1)

T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
[CrossRef]

2013 (1)

A. V. Veniaminov and U. V. Mahilny, Opt. Spectrosc. 115, 906 (2013).
[CrossRef]

2012 (1)

J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Intern. 2012, 803439 (2012).

2011 (1)

2008 (1)

2006 (3)

O. V. Andreeva, O. V. Bandyuk, and A. P. Kushnarenko, J. Opt. Technol. 73, 625 (2006).
[CrossRef]

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Tech. Phys. Lett. 32, 945 (2006).
[CrossRef]

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Proc. SPIE 6731, 67312R (2006).

2005 (1)

2001 (1)

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and A. P. Stupak, J. Appl. Spectrosc. 68, 124 (2001).

1999 (1)

Yu. N. Denisyuk, N. M. Ganzherli, I. A. Maurer, and S. A. Pisarevskaya, Opt. Spectrosc. 86, 922 (1999).

1996 (1)

1990 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Andreeva, O. V.

Ayres, M.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Bandyuk, O. V.

Barbastathis, G.

Barton, J. K.

Belendez, A.

Brady, D.

Burr, G. W.

Cao, L.

T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
[CrossRef]

Castro, J.

Coufal, H.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Curtis, K.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

de Leon, E.

Denisyuk, Yu. N.

Yu. N. Denisyuk, N. M. Ganzherli, I. A. Maurer, and S. A. Pisarevskaya, Opt. Spectrosc. 86, 922 (1999).

Dhar, L.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Efendiev, T. Sh.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Proc. SPIE 6731, 67312R (2006).

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Tech. Phys. Lett. 32, 945 (2006).
[CrossRef]

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and A. P. Stupak, J. Appl. Spectrosc. 68, 124 (2001).

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Lasers, Applications and Technologies (LAT), Moscow, 2002, paper LME9.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and V. A. Zaporozhchenko, in Proceedings of the 15th Belarussian–Lithuanian Seminar on Lasers and Optical Nonlinearity, Minsk, 2002, pp. 150–156.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and S. A. Ryzhechkin, in Abstract of the XVI International Conference on Coherent and Nonlinear Optics, Moscow, 1998, paper CHhu27.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Nice, France, 2000, paper K79.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Munich, 2009, paper CC.P.7.THU.

Fernandez, E.

Gallego, S.

Ganzherli, N. M.

Yu. N. Denisyuk, N. M. Ganzherli, I. A. Maurer, and S. A. Pisarevskaya, Opt. Spectrosc. 86, 922 (1999).

Garcia, C.

Gleeson, M. R.

J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Intern. 2012, 803439 (2012).

Günter, P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).

Guo, J.

J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Intern. 2012, 803439 (2012).

He, Q.

T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
[CrossRef]

Heifetz, A.

Hemmer, P. R.

Hesselink, L.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Hill, A.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Hong, J. H.

Huignard, J. P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).

Jin, G.

T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
[CrossRef]

Katarkevich, V. M.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Tech. Phys. Lett. 32, 945 (2006).
[CrossRef]

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Proc. SPIE 6731, 67312R (2006).

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and A. P. Stupak, J. Appl. Spectrosc. 68, 124 (2001).

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Lasers, Applications and Technologies (LAT), Moscow, 2002, paper LME9.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and V. A. Zaporozhchenko, in Proceedings of the 15th Belarussian–Lithuanian Seminar on Lasers and Optical Nonlinearity, Minsk, 2002, pp. 150–156.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and S. A. Ryzhechkin, in Abstract of the XVI International Conference on Coherent and Nonlinear Optics, Moscow, 1998, paper CHhu27.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Nice, France, 2000, paper K79.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Munich, 2009, paper CC.P.7.THU.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Kostuk, R. K.

Kushnarenko, A. P.

Lee, J.

Lee, J. K.

Li, C.

T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
[CrossRef]

Luo, Y.

Mahilny, U. V.

A. V. Veniaminov and U. V. Mahilny, Opt. Spectrosc. 115, 906 (2013).
[CrossRef]

Marquez, A.

Maurer, I. A.

Yu. N. Denisyuk, N. M. Ganzherli, I. A. Maurer, and S. A. Pisarevskaya, Opt. Spectrosc. 86, 922 (1999).

Mok, F. H.

Ortuno, M.

Pascual, I.

Pisarevskaya, S. A.

Yu. N. Denisyuk, N. M. Ganzherli, I. A. Maurer, and S. A. Pisarevskaya, Opt. Spectrosc. 86, 922 (1999).

Psaltis, D.

Rubinov, A. N.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Tech. Phys. Lett. 32, 945 (2006).
[CrossRef]

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Proc. SPIE 6731, 67312R (2006).

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and A. P. Stupak, J. Appl. Spectrosc. 68, 124 (2001).

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Lasers, Applications and Technologies (LAT), Moscow, 2002, paper LME9.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and S. A. Ryzhechkin, in Abstract of the XVI International Conference on Coherent and Nonlinear Optics, Moscow, 1998, paper CHhu27.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and V. A. Zaporozhchenko, in Proceedings of the 15th Belarussian–Lithuanian Seminar on Lasers and Optical Nonlinearity, Minsk, 2002, pp. 150–156.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Nice, France, 2000, paper K79.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Munich, 2009, paper CC.P.7.THU.

Ryzhechkin, S. A.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and S. A. Ryzhechkin, in Abstract of the XVI International Conference on Coherent and Nonlinear Optics, Moscow, 1998, paper CHhu27.

Shahriar, M. S.

Shen, J. T.

Sheridan, J. T.

J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Intern. 2012, 803439 (2012).

Stupak, A. P.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and A. P. Stupak, J. Appl. Spectrosc. 68, 124 (2001).

Tripathi, R.

Veniaminov, A. V.

A. V. Veniaminov and U. V. Mahilny, Opt. Spectrosc. 115, 906 (2013).
[CrossRef]

Wilson, W.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Yeh, P.

Yum, H. N.

Zaporozhchenko, V. A.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and V. A. Zaporozhchenko, in Proceedings of the 15th Belarussian–Lithuanian Seminar on Lasers and Optical Nonlinearity, Minsk, 2002, pp. 150–156.

Zheng, T.

T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

J. Appl. Spectrosc. (1)

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and A. P. Stupak, J. Appl. Spectrosc. 68, 124 (2001).

J. Opt. (1)

T. Zheng, L. Cao, C. Li, Q. He, and G. Jin, J. Opt. 16, 055405 (2014).
[CrossRef]

J. Opt. Technol. (1)

Opt. Lett. (4)

Opt. Spectrosc. (2)

A. V. Veniaminov and U. V. Mahilny, Opt. Spectrosc. 115, 906 (2013).
[CrossRef]

Yu. N. Denisyuk, N. M. Ganzherli, I. A. Maurer, and S. A. Pisarevskaya, Opt. Spectrosc. 86, 922 (1999).

Phys. Res. Intern. (1)

J. Guo, M. R. Gleeson, and J. T. Sheridan, Phys. Res. Intern. 2012, 803439 (2012).

Proc. SPIE (1)

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Proc. SPIE 6731, 67312R (2006).

Tech. Phys. Lett. (1)

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, Tech. Phys. Lett. 32, 945 (2006).
[CrossRef]

Other (9)

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and V. A. Zaporozhchenko, in Proceedings of the 15th Belarussian–Lithuanian Seminar on Lasers and Optical Nonlinearity, Minsk, 2002, pp. 150–156.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Lasers, Applications and Technologies (LAT), Moscow, 2002, paper LME9.

T. Sh. Efendiev, V. M. Katarkevich, A. N. Rubinov, and S. A. Ryzhechkin, in Abstract of the XVI International Conference on Coherent and Nonlinear Optics, Moscow, 1998, paper CHhu27.

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the International Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Nice, France, 2000, paper K79.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).

I. Naydenova, ed., Holograms—Recording Materials and Applications (InTech, 2011).

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

T. Sh. Efendiev, V. M. Katarkevich, and A. N. Rubinov, in Proceedings of the Conference on Laser and Electro-Optics (CLEO/Europe-EQEC), Munich, 2009, paper CC.P.7.THU.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the angular multiplexing and readout of the volume holograms recorded in a thick layer dye-doped jelly-like gelatin: n is the normal to the gel sample surface; WB1 and WB2 are Nd:YAG laser writing beams; RB is an He–Ne laser readout beam.

Fig. 2.
Fig. 2.

Bragg selectivity curve for a single, strong unslanted grating with a diffraction efficiency of 92%. The symbols represent measured data. The solid curve is fit to the data by using the coupled wave equation [22].

Fig. 3.
Fig. 3.

Absorption spectra of a 1.1 mm thick Rh6G-doped jelly-like gelatin sample taken from the hologram recording zone (red line) and from an unexposed area (blue line): (a) just after recording the first grating; (b) 19h after recording the first grating (just before writing the second hologram); (c) just after recording the second grating; (d) 70h after recording the second grating (just before writing the third hologram); (e) just after recording the third grating; (f) 25h after recording the third grating.

Fig. 4.
Fig. 4.

Angular scan of the diffraction efficiencies of three angular-multiplexed volume holograms. The measurements were performed 25h after recording the third superimposed grating.

Metrics