Abstract

Pattern-integrated interference lithography (PIIL) has recently been proposed as a rapid, single-step, and wafer-scale fabrication technique for custom-modified one-, two- and three-dimensional periodic structures. Among these structures, photonic-crystal devices have significant potential applications. In this work, we simulate the fabrication of two-dimensional photonic-crystal devices by PIIL using a rigorous vector modeling and realistic photolithographic conditions. We also model the etched patterns in silicon and evaluate the photonic-crystal motif-area and motif-displacement errors. We further calculate the device intensity transmission spectra and show that the performance of PIIL-produced devices are comparable to, and in some cases are superior to, that of their idealized equivalents.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer, 2010).
  2. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
    [CrossRef]
  3. P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
    [CrossRef]
  4. T. P. White, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, Opt. Lett. 28, 2452 (2003).
    [CrossRef]
  5. W. Mao, Y. Zhong, J. Dong, and H. Wang, J. Opt. Soc. Am. B 22, 1085 (2005).
    [CrossRef]
  6. L. Z. Cai, X. L. Yang, and Y. R. Wang, Opt. Lett. 27, 900 (2002).
    [CrossRef]
  7. M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).
  8. G. J. Schneider, J. Murakowski, S. Venkataraman, and D. W. Prather, J. Vac. Sci. Technol. B 22, 146 (2004).
    [CrossRef]
  9. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, Appl. Opt. 51, 4028 (2012).
    [CrossRef]
  10. G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, Rev. Sci. Instrum. 83, 063707 (2012).
    [CrossRef]
  11. M. C. R. Leibovici and T. K. Gaylord, J. Vac. Sci. Technol. B 31, 06F501 (2013).
    [CrossRef]
  12. T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, Appl. Opt. 52, 61 (2013).
    [CrossRef]
  13. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, Opt. Express 20, 23643 (2012).
    [CrossRef]
  14. D. E. Sedivy and T. K. Gaylord, Appl. Opt. 53, D12 (2014).
    [CrossRef]
  15. D. G. Flagello, T. Milster, and A. E. Rosenbluth, J. Opt. Soc. Am. A 13, 53 (1996).
    [CrossRef]
  16. J. L. Stay and T. K. Gaylord, Appl. Opt. 47, 3221 (2008).
    [CrossRef]
  17. T. Ogawa, A. Sekiguchi, and N. Yoshizawa, Jpn. J. Appl. Phys. 35, 6360 (1996).
    [CrossRef]
  18. J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).
  19. M. C. R. Leibovici and T. K. Gaylord, in Frontiers in Optics (Optical Society of America, 2013), paper FW1F.5.
  20. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]

2014

2013

M. C. R. Leibovici and T. K. Gaylord, J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, Appl. Opt. 52, 61 (2013).
[CrossRef]

2012

2008

2005

2004

G. J. Schneider, J. Murakowski, S. Venkataraman, and D. W. Prather, J. Vac. Sci. Technol. B 22, 146 (2004).
[CrossRef]

2003

2002

2001

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

1996

T. Ogawa, A. Sekiguchi, and N. Yoshizawa, Jpn. J. Appl. Phys. 35, 6360 (1996).
[CrossRef]

D. G. Flagello, T. Milster, and A. E. Rosenbluth, J. Opt. Soc. Am. A 13, 53 (1996).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

Agio, M.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Birner, A.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Botten, L. C.

Burrow, G. M.

Cai, L. Z.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

de Sterke, C. M.

Dong, J.

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

Flagello, D. G.

Gaylord, T. K.

D. E. Sedivy and T. K. Gaylord, Appl. Opt. 53, D12 (2014).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, Appl. Opt. 52, 61 (2013).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, Appl. Opt. 51, 4028 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, Opt. Express 20, 23643 (2012).
[CrossRef]

J. L. Stay and T. K. Gaylord, Appl. Opt. 47, 3221 (2008).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, in Frontiers in Optics (Optical Society of America, 2013), paper FW1F.5.

Gosele, U.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Inoue, K.

K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer, 2010).

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

Kramper, P.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Kummer, J. W.

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

Leibovici, M. C. R.

M. C. R. Leibovici and T. K. Gaylord, J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, Appl. Opt. 52, 61 (2013).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, Opt. Express 20, 23643 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, Appl. Opt. 51, 4028 (2012).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, in Frontiers in Optics (Optical Society of America, 2013), paper FW1F.5.

Maldovan, M.

M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).

Mao, W.

McPhedran, R. C.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

Milster, T.

Mlynek, J.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Muller, F.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Murakowski, J.

G. J. Schneider, J. Murakowski, S. Venkataraman, and D. W. Prather, J. Vac. Sci. Technol. B 22, 146 (2004).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Ogawa, T.

T. Ogawa, A. Sekiguchi, and N. Yoshizawa, Jpn. J. Appl. Phys. 35, 6360 (1996).
[CrossRef]

Ohtaka, K.

K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer, 2010).

Prather, D. W.

G. J. Schneider, J. Murakowski, S. Venkataraman, and D. W. Prather, J. Vac. Sci. Technol. B 22, 146 (2004).
[CrossRef]

Rosenbluth, A. E.

Sandoghdar, V.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Schneider, G. J.

G. J. Schneider, J. Murakowski, S. Venkataraman, and D. W. Prather, J. Vac. Sci. Technol. B 22, 146 (2004).
[CrossRef]

Sedivy, D. E.

Sekiguchi, A.

T. Ogawa, A. Sekiguchi, and N. Yoshizawa, Jpn. J. Appl. Phys. 35, 6360 (1996).
[CrossRef]

Sheats, J. R.

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Smith, B. W.

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Soukoulis, C. M.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Stay, J. L.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Thomas, E. L.

M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).

Venkataraman, S.

G. J. Schneider, J. Murakowski, S. Venkataraman, and D. W. Prather, J. Vac. Sci. Technol. B 22, 146 (2004).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

Wang, H.

Wang, Y. R.

White, T. P.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yang, X. L.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yoshizawa, N.

T. Ogawa, A. Sekiguchi, and N. Yoshizawa, Jpn. J. Appl. Phys. 35, 6360 (1996).
[CrossRef]

Zhong, Y.

Appl. Opt.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

G. J. Schneider, J. Murakowski, S. Venkataraman, and D. W. Prather, J. Vac. Sci. Technol. B 22, 146 (2004).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

Jpn. J. Appl. Phys.

T. Ogawa, A. Sekiguchi, and N. Yoshizawa, Jpn. J. Appl. Phys. 35, 6360 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Rev. Sci. Instrum.

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Other

M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).

K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer, 2010).

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

M. C. R. Leibovici and T. K. Gaylord, in Frontiers in Optics (Optical Society of America, 2013), paper FW1F.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) At the image plane of a 7f optical system, three PIIL beams produce a 2D custom-modified optical interference pattern. (b), (c), and (d) Mask patterns required to produce the PhC 90-deg-bend waveguide, passband filter, and stopband filter by PIIL, respectively.

Fig. 2.
Fig. 2.

Simulated PIIL exposures for the PhC (a) 90-deg-bend waveguide, (b) passband filter, and (c) stopband filter. Pillars in the vicinity of the functional elements are slightly distorted (right-hand-side insets), while a few periods away the pillars become almost unperturbed (left-hand-side insets).

Fig. 3.
Fig. 3.

Estimated binary etched structures in the Si-substrate for the PhC (a) 90-deg-bend waveguide, (b) passband filter, and (c) stopband filter. The white (black) pixels in the inset represent pixels that are present (absent) in the estimated motif but absent (present) in the reference motif.

Fig. 4.
Fig. 4.

Transmission spectra of the PIIL-produced and the idealized PhC (a) 90-deg-bend waveguide, (b) passband filter, and (c) stopband filter. The performance of the PIIL-produced PhC devices are remarkably similar to those of the idealized devices.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

εarea=m,n|ν(m,n)τ(m,n)|m,nτ(m,n)andεdisp=dΛ,

Metrics