Abstract

Holographic optical tweezers (HOTs) extend optical trapping into three dimensions. Volume imaging then becomes a concern as trapped objects are easily moved out of focus of the imaging objective lens. Here we demonstrate a three-dimensional real-time interactive optical trapping, manipulating, and imaging system based on HOTs incorporated with volume holographic microscope. Intensity information about the trapped objects at multiple depths can be captured in a single measurement. This method is compatible with most imaging modes such as bright-field and fluorescence.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, Opt. Lett. 24, 608 (1999).
    [CrossRef]
  3. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef]
  4. M. Padgett and R. Di Leonardo, Lab Chip 11, 1196 (2011).
    [CrossRef]
  5. S.-H. Lee and D. G. Grier, Opt. Express 15, 1505 (2007).
    [CrossRef]
  6. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, Opt. Express 19, 3835 (2011).
    [CrossRef]
  7. J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, Opt. Express 16, 7244 (2008).
    [CrossRef]
  8. R. Bowman, G. Gibson, and M. Padgett, Opt. Express 18, 11785 (2010).
    [CrossRef]
  9. I. Perch-Nielsen, P. Rodrigo, and J. Glückstad, Opt. Express 13, 2852 (2005).
    [CrossRef]
  10. W. Liu, D. Psaltis, and G. Barbastathis, Opt. Lett. 27, 854 (2002).
    [CrossRef]
  11. Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, Opt. Lett. 33, 2098 (2008).
    [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).
  13. H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).
  14. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, Opt. Lett. 33, 566 (2008).
    [CrossRef]
  15. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, Appl. Opt. 43, 1533 (2004).
    [CrossRef]
  16. R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
    [CrossRef]
  17. P. Wissmann, S. B. Oh, and G. Barbastathis, Opt. Express 16, 7516 (2008).
    [CrossRef]

2011 (3)

M. Padgett and R. Di Leonardo, Lab Chip 11, 1196 (2011).
[CrossRef]

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, Opt. Express 19, 3835 (2011).
[CrossRef]

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

2010 (1)

2008 (4)

2007 (1)

2005 (1)

2004 (1)

2003 (1)

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

2002 (1)

1999 (1)

1986 (1)

Ashkin, A.

Barbastathis, G.

Barton, J. K.

Bjorkholm, J. E.

Bowman, R.

Bowman, R. W.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

Carberry, D.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

Chu, S.

Conkey, D. B.

Coufal, H.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Dam, J. S.

Di Leonardo, R.

M. Padgett and R. Di Leonardo, Lab Chip 11, 1196 (2011).
[CrossRef]

Dziedzic, J. M.

Gelsinger, P. J.

Gelsinger-Austin, P. J.

Gibson, G.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

R. Bowman, G. Gibson, and M. Padgett, Opt. Express 18, 11785 (2010).
[CrossRef]

Glückstad, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).

Grier, D. G.

Haist, T.

Hesselink, L.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Kostuk, R. K.

Lee, S.-H.

Liu, W.

Luo, Y.

Miles, M.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

Oh, S. B.

Padgett, M.

Padgett, M. J.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

Palima, D.

Pavani, S. R. P.

Perch-Nielsen, I.

Perch-Nielsen, I. R.

Picco, L.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

Piestun, R.

Psaltis, D.

W. Liu, D. Psaltis, and G. Barbastathis, Opt. Lett. 27, 854 (2002).
[CrossRef]

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Reicherter, M.

Rodrigo, P.

Shih, T.

Sinha, A.

Smalyukh, I. I.

Sun, W.

Tiziani, H. J.

Trivedi, R. P.

Wagemann, E. U.

Watson, J. M.

Wissmann, P.

Appl. Opt. (1)

J. Opt. (1)

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, J. Opt. 13, 044002 (2011).
[CrossRef]

Lab Chip (1)

M. Padgett and R. Di Leonardo, Lab Chip 11, 1196 (2011).
[CrossRef]

Nature (1)

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Supplementary Material (1)

» Media 1: MOV (617 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

VHM imaging system setup.

Fig. 2.
Fig. 2.

Schematic design of the HOT system combined with a volume holographic imaging system. f 1 = 125 mm , f 2 = 75 mm . MO1-3, microscope objective lens. A half-wave plate is used before the SLM to align the polarization with the SLM.

Fig. 3.
Fig. 3.

(a) Lateral resolution measurement of VHM imaging system. A 1951 USAF resolution target is used. This two-plane multiplexed volume hologram shows two depths information. The resolution target is placed on the focal plane of the second depth. Group 7 Element 6 has 228.0 line pairs/mm and could be easily resolved. (b) and (c) show pixel values along vertical lines indicated by the yellow dash line at in-focus plane and defocus plane, respectively.

Fig. 4.
Fig. 4.

(a) Angular selectivity experimental measurement compared with Zemax simulation result and analytical solutions. The results show an angular selectivity FWHM of 0.03 deg. (b) The depth selectivity experimental measurement shows a FWHM of 14 μm.

Fig. 5.
Fig. 5.

HOTs system is trapping and manipulating two 10 μm fluorescence microbeads (Media 1). Plane A and Plane B are 30 μm apart. Images at different focal planes are directly shown simultaneously on the camera. The beads are trapped and moved in Plane A first (a and b). The optical tweezers then pushed the two beads along the optical axis, placed them on Plane B (c and d), and then rotated these beads along the optical axis (e and f). The beads tend to fade in the last image due to photobleaching caused by the high power trapping.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η sinc 2 ( L ( k⃗ i + K⃗ k⃗ d ) · z ^ 2 π ) sinc 2 ( L δ k⃗ d · z ^ 2 π ) ,
δ k⃗ d k⃗ i + K⃗ k⃗ d ,
I d I 0 = 1 π 0 2 π d ϕ 0 1 d ρ ρ sinc 2 ( 2 a L sin θ s δ n λ f 2 ρ sin ϕ ) ,

Metrics