Abstract

The far-zone scattered spectrum has been investigated for the scattering of two correlated sources from a deterministic medium. It is shown that red shift or blue shift can be produced in the far-zone scattered spectrum, and the spectral shift is influenced by the source correlation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Fischer and E. Wolf, J. Opt. Soc. Am. A 11, 1128 (1994).
    [CrossRef]
  2. T. Shirai and T. Asakura, J. Opt. Soc. Am. A 12, 1354 (1995).
    [CrossRef]
  3. G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
    [CrossRef]
  4. T. D. Visser, Fischer, and E. Wolf, J. Opt. Soc. Am. A 23, 1631 (2006).
    [CrossRef]
  5. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge, 2007).
  6. Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007).
    [CrossRef]
  7. T. Wang and D. Zhao, Opt. Lett. 35, 2412 (2010).
    [CrossRef]
  8. Z. Tong and O. Korotkova, Phys. Rev. A 82, 033836 (2010).
    [CrossRef]
  9. X. Du and D. Zhao, Phys. Lett. A 375, 1269 (2011).
    [CrossRef]
  10. E. Wolf, J. T. Foley, and F. Gori, J. Opt. Soc. Am. A 6, 1142 (1989).
    [CrossRef]
  11. A. Dogariu and E. Wolf, Opt. Lett. 23, 1340 (1998).
    [CrossRef]
  12. E. Wolf, J. Opt. Soc. Am. A 14, 2820 (1997).
    [CrossRef]
  13. T. Wang and D. Zhao, Opt. Lett. 36, 328 (2011).
    [CrossRef]
  14. E. Wolf, Phys. Rev. Lett. 58, 2646 (1987).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge, 1999).
  16. O. Korotkova and E. Wolf, Phys. Rev. A 75, 056609 (2007).
    [CrossRef]

2011 (2)

X. Du and D. Zhao, Phys. Lett. A 375, 1269 (2011).
[CrossRef]

T. Wang and D. Zhao, Opt. Lett. 36, 328 (2011).
[CrossRef]

2010 (2)

T. Wang and D. Zhao, Opt. Lett. 35, 2412 (2010).
[CrossRef]

Z. Tong and O. Korotkova, Phys. Rev. A 82, 033836 (2010).
[CrossRef]

2007 (2)

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007).
[CrossRef]

O. Korotkova and E. Wolf, Phys. Rev. A 75, 056609 (2007).
[CrossRef]

2006 (1)

1999 (1)

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1994 (1)

1989 (1)

1987 (1)

E. Wolf, Phys. Rev. Lett. 58, 2646 (1987).
[CrossRef]

Asakura, T.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge, 1999).

Chen, Y.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007).
[CrossRef]

Dogariu, A.

Du, X.

X. Du and D. Zhao, Phys. Lett. A 375, 1269 (2011).
[CrossRef]

Fischer,

Fischer, D. G.

Foley, J. T.

Gbur, G.

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

Gori, F.

Korotkova, O.

Z. Tong and O. Korotkova, Phys. Rev. A 82, 033836 (2010).
[CrossRef]

O. Korotkova and E. Wolf, Phys. Rev. A 75, 056609 (2007).
[CrossRef]

Shirai, T.

Tong, Z.

Z. Tong and O. Korotkova, Phys. Rev. A 82, 033836 (2010).
[CrossRef]

Visser, T. D.

Wang, T.

Wolf, E.

O. Korotkova and E. Wolf, Phys. Rev. A 75, 056609 (2007).
[CrossRef]

T. D. Visser, Fischer, and E. Wolf, J. Opt. Soc. Am. A 23, 1631 (2006).
[CrossRef]

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

A. Dogariu and E. Wolf, Opt. Lett. 23, 1340 (1998).
[CrossRef]

E. Wolf, J. Opt. Soc. Am. A 14, 2820 (1997).
[CrossRef]

D. G. Fischer and E. Wolf, J. Opt. Soc. Am. A 11, 1128 (1994).
[CrossRef]

E. Wolf, J. T. Foley, and F. Gori, J. Opt. Soc. Am. A 6, 1142 (1989).
[CrossRef]

E. Wolf, Phys. Rev. Lett. 58, 2646 (1987).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge, 1999).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge, 2007).

Xin, Y.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007).
[CrossRef]

Zhao, D.

Zhao, Q.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007).
[CrossRef]

Zhou, M.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007).
[CrossRef]

J. Opt. Soc. Am. A (5)

Opt. Commun. (2)

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007).
[CrossRef]

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. A (1)

X. Du and D. Zhao, Phys. Lett. A 375, 1269 (2011).
[CrossRef]

Phys. Rev. A (2)

O. Korotkova and E. Wolf, Phys. Rev. A 75, 056609 (2007).
[CrossRef]

Z. Tong and O. Korotkova, Phys. Rev. A 82, 033836 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

E. Wolf, Phys. Rev. Lett. 58, 2646 (1987).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge, 1999).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Illustrating the notations.

Fig. 2.
Fig. 2.

Spectrum of the scattering of broadband light with ω1=ω02δ0 (red line) or ω1=ω0+2δ0 (blue line). Parameters for calculation are: ω0=3.427×1015s1, δ0=0.05ω0, δ1=1.5δ0, k0σ=ω0σ/c=10, A=1, B=1, b=2.

Fig. 3.
Fig. 3.

Spectrum of the scattering of narrowband light with ω1=ω02δ0 (red line) or ω1=ω0+2δ0 (blue line). Other parameters for calculation are: ω0=3.427×1015s1, δ0=0.001ω0, δ1=1.5δ0, k0σ=ω0σ/c=10, A=1, B=1, b=2.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

U(i)(r,s01,s02,ω)=a1(ω)exp(iks01·r)+a2(ω)exp(iks02·r)
F(r,ω)=k2η(r,ω)
η(r,ω)=[n2(r,ω)1]/4π,
U(s)(rs,s01,s02,ω)=DF(r,ω)U(i)(r,s01,s02,ω)G(|rr|,ω)d3r,
G(|rr|,ω)exp(ikr)rexp(iks·r).
U(s)(rs,s01,s02,ω)=a1(ω)(ωc)2exp(ikr)rη˜(K1,ω)+a2(ω)(ωc)2exp(ikr)rη˜(K2,ω),
η˜(K,ω)=Dη(r,ω)exp[iK·r]d3r
η(r,ω)=A(2πσ2)3/2exp[r22σ2].
η˜(K,ω)=Aexp(σ2K22).
S(s)(rs,ω)=U(s)*(rs,ω)U(s)(rs,ω).
S(s)(rs,s01,s02,ω)=A2r2(ωc)4{S1(ω)exp(σ2K12)+S2(ω)exp(σ2K22)+Q1,2(ω)exp[12σ2(K12+K22)]+Q2,1(ω)exp[12σ2(K12+K22)]},
Si(ω)=ai*(ω)ai(ω)
Oi,j(ω)=ai*(ω)aj(ω)
μ(ω)=Q1,2(ω)/S1(ω)S2(ω).
Q1,2(ω)=μ(ω)S(ω).
S(s)(rs,s01,s02,ω)=A2S(ω)r2(ωc)4{exp(σ2K12)+exp(σ2K22)+2exp[12σ2(K12+K22)]Re[μ(ω)]},
S(s)(rs,s01,s02,ω)=2A2S(ω)r2(ωc)4{1+Re[μ(ω)]}×exp[k2σ2(22cosθ)].
S(ω)=Bexp[(ωω0)2/2δ02],
μ(ω)=bexp[(ωω1)2/2δ12]1,
S(s)(rs,s01,s02,ω)=CS1(s)(θ,ω)S2(s)(ω),
C=2A2Bbr2exp[(ω1ω0)22(δ12+δ02)],
S1(s)(θ,ω)=(ωc)4exp[k2σ2(22cosθ)],
S2(s)(ω)=exp[(ωω)22δ2]
1δ2=1δ02+1δ12,
ω=δ12ω0+δ02ω1δ12+δ02.

Metrics