Abstract

Separate nanoholes with the minimum size down to 35 nm (λ/15) and nanohole arrays with the hole size about 100 nm (λ/5) were fabricated in a 50 nm optically “thick” Au/Pd film, using single 532 nm pump nanosecond laser pulses focused to diffraction-limited spots by a specially designed apertureless dielectric fiber probe. Nanohole fabrication in the metallic film was found to result from lateral heat diffusion and center-symmetrical lateral expulsion of the melt by its vapor recoil pressure. The optimized apertureless dielectric microprobe was demonstrated to enable laser fabrication of deep through nanoholes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
    [CrossRef]
  2. T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).
    [CrossRef]
  3. S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, Opt. Lett. 24, 914 (1999).
    [CrossRef]
  4. A. A. Gorbunov and W. Pompe, Phys. Status Solidi A 145, 333 (1994).
    [CrossRef]
  5. M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003).
    [CrossRef]
  6. A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003).
    [CrossRef]
  7. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).
  8. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).
  9. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
    [CrossRef]
  10. F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).
    [CrossRef]
  11. G. Wysocki, J. Heitz, and D. Bäuerle, Appl. Phys. Lett. 84, 2025 (2004).
    [CrossRef]
  12. S. Yakunin and J. Heitz, J. Laser Micro/Nanoeng. 6, 180 (2011).
    [CrossRef]
  13. J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
    [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).
  15. D. Baurle, Laser Processing and Chemistry (Springer, 2011).
  16. The thermal conductivity coefficient of Au κ(300  K)=317  Wm−1 K−1 [15] decreases by 5.3 times upon its alloying with Pd (20 wt. %), while at the Au melting temperature Tmelt,Au≈1337  K such reduction occurs by 2.5 times. Moreover, due to phonon scattering on its nanocrystallites, similar 50 nm thick Au film on a quartz substrate is known to demonstrate twice-lower thermal conductivity. As a result, for the weak temperature dependences of the Au heat capacity (Cp≈0.13  J/(gK)) [15] and mass density (ρ≈17.3  g/cm3), its thermal diffusivity χ=κ/(ρCp)) decreases overall by 5 (0.28  cm2/s) or 10.6 (0.13  cm2/s) times at 1337 or 300 K, respectively. Hence, over the 5 ns laser pulse the molten Au/Pd film provides heat conduction over the characteristic 1/e length σT≈1.55  μm.
  17. C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
    [CrossRef]
  18. G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997).
    [CrossRef]
  19. G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
    [CrossRef]
  20. E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
    [CrossRef]
  21. I. S. Grigoriev and E. Z. Melikhov, Handbook of Physical Quantities (CRC Press, 1997).
  22. D. A. Willis and X. Xu, J. Heat Transfer 122, 763 (2000).
    [CrossRef]
  23. N. Seifert, G. Betz, and W. Husinsky, Appl. Surf. Sci. 103, 63 (1996).
    [CrossRef]

2013

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

2011

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
[CrossRef]

S. Yakunin and J. Heitz, J. Laser Micro/Nanoeng. 6, 180 (2011).
[CrossRef]

2010

T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).
[CrossRef]

2009

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
[CrossRef]

2007

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

2005

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
[CrossRef]

2004

F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, Appl. Phys. Lett. 84, 2025 (2004).
[CrossRef]

2003

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003).
[CrossRef]

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003).
[CrossRef]

2000

D. A. Willis and X. Xu, J. Heat Transfer 122, 763 (2000).
[CrossRef]

1999

1997

G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997).
[CrossRef]

1996

N. Seifert, G. Betz, and W. Husinsky, Appl. Surf. Sci. 103, 63 (1996).
[CrossRef]

1994

A. A. Gorbunov and W. Pompe, Phys. Status Solidi A 145, 333 (1994).
[CrossRef]

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

1978

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
[CrossRef]

Ackerman, M. W.

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
[CrossRef]

Bäuerle, D.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, Appl. Phys. Lett. 84, 2025 (2004).
[CrossRef]

Baurle, D.

D. Baurle, Laser Processing and Chemistry (Springer, 2011).

Betz, G.

N. Seifert, G. Betz, and W. Husinsky, Appl. Surf. Sci. 103, 63 (1996).
[CrossRef]

Bizenberger, P.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Bunkin, A. F.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

Chen, G.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
[CrossRef]

Chichkov, B. N.

Chihkov, B. N.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Chimmalgi, A.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003).
[CrossRef]

Choi, T. Y.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003).
[CrossRef]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).
[CrossRef]

M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

Egbert, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Fallnich, C.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Genet, C.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

Gorbunov, A. A.

A. A. Gorbunov and W. Pompe, Phys. Status Solidi A 145, 333 (1994).
[CrossRef]

Grigoriev, I. S.

I. S. Grigoriev and E. Z. Melikhov, Handbook of Physical Quantities (CRC Press, 1997).

Grigoropoulos, C. P.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).

Hartmann, J.

G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997).
[CrossRef]

Havill, T. N.

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
[CrossRef]

Heitz, J.

S. Yakunin and J. Heitz, J. Laser Micro/Nanoeng. 6, 180 (2011).
[CrossRef]

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, Appl. Phys. Lett. 84, 2025 (2004).
[CrossRef]

Hing, P.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
[CrossRef]

Ho, C. Y.

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
[CrossRef]

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).
[CrossRef]

M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003).
[CrossRef]

Huang, S. M.

M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003).
[CrossRef]

Hui, P.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
[CrossRef]

Husinsky, W.

N. Seifert, G. Betz, and W. Husinsky, Appl. Surf. Sci. 103, 63 (1996).
[CrossRef]

Ionin, A. A.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
[CrossRef]

Käding, O. W.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Koch, J.

F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).
[CrossRef]

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Komvopoulos, K.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003).
[CrossRef]

Kong, L.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
[CrossRef]

Korte, F.

F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).
[CrossRef]

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Kudryashov, S. I.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
[CrossRef]

Langer, G.

G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997).
[CrossRef]

Lednev, V. N.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

Lieberman, K.

Lukyanchuk, B. S.

M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003).
[CrossRef]

Makarov, S. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
[CrossRef]

Matthias, E.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Melikhov, E. Z.

I. S. Grigoriev and E. Z. Melikhov, Handbook of Physical Quantities (CRC Press, 1997).

Neske, E.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Nolte, S.

Oh, S. G.

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
[CrossRef]

Ostendorf, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Pershin, S. M.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

Petzoldt, S.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Pita, K.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
[CrossRef]

Pompe, W.

A. A. Gorbunov and W. Pompe, Phys. Status Solidi A 145, 333 (1994).
[CrossRef]

Reichling, M.

G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997).
[CrossRef]

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Seifert, N.

N. Seifert, G. Betz, and W. Husinsky, Appl. Surf. Sci. 103, 63 (1996).
[CrossRef]

Seleznev, L. V.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
[CrossRef]

Serbin, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Shani, Y.

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).
[CrossRef]

Siegel, J.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Sinitsyn, D. V.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
[CrossRef]

Skurk, H.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Stehrer, T.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).

Terkel, H.

Welling, H.

Willis, D. A.

D. A. Willis and X. Xu, J. Heat Transfer 122, 763 (2000).
[CrossRef]

Wu, K. Y.

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
[CrossRef]

Wysocki, G.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, Appl. Phys. Lett. 84, 2025 (2004).
[CrossRef]

Xu, X.

D. A. Willis and X. Xu, J. Heat Transfer 122, 763 (2000).
[CrossRef]

Yakunin, S.

S. Yakunin and J. Heitz, J. Laser Micro/Nanoeng. 6, 180 (2011).
[CrossRef]

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
[CrossRef]

Appl. Phys. A

F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).
[CrossRef]

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).

Appl. Phys. A.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005).
[CrossRef]

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994).
[CrossRef]

Appl. Phys. Lett.

G. Wysocki, J. Heitz, and D. Bäuerle, Appl. Phys. Lett. 84, 2025 (2004).
[CrossRef]

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003).
[CrossRef]

Appl. Surf. Sci.

N. Seifert, G. Betz, and W. Husinsky, Appl. Surf. Sci. 103, 63 (1996).
[CrossRef]

J. Exp. Theor. Phys.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).

J. Exp. Theor. Phys. Lett.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011).
[CrossRef]

J. Heat Transfer

D. A. Willis and X. Xu, J. Heat Transfer 122, 763 (2000).
[CrossRef]

J. Laser Micro/Nanoeng.

S. Yakunin and J. Heitz, J. Laser Micro/Nanoeng. 6, 180 (2011).
[CrossRef]

J. Phys. Chem. Ref. Data

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978).
[CrossRef]

Laser Photon. Rev.

T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).
[CrossRef]

Nature

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

Opt. Lett.

Phys. Status Solidi A

A. A. Gorbunov and W. Pompe, Phys. Status Solidi A 145, 333 (1994).
[CrossRef]

Proc. SPIE

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009).
[CrossRef]

Rev. Sci. Instrum.

G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997).
[CrossRef]

Sens. Actuators A

M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).

D. Baurle, Laser Processing and Chemistry (Springer, 2011).

The thermal conductivity coefficient of Au κ(300  K)=317  Wm−1 K−1 [15] decreases by 5.3 times upon its alloying with Pd (20 wt. %), while at the Au melting temperature Tmelt,Au≈1337  K such reduction occurs by 2.5 times. Moreover, due to phonon scattering on its nanocrystallites, similar 50 nm thick Au film on a quartz substrate is known to demonstrate twice-lower thermal conductivity. As a result, for the weak temperature dependences of the Au heat capacity (Cp≈0.13  J/(gK)) [15] and mass density (ρ≈17.3  g/cm3), its thermal diffusivity χ=κ/(ρCp)) decreases overall by 5 (0.28  cm2/s) or 10.6 (0.13  cm2/s) times at 1337 or 300 K, respectively. Hence, over the 5 ns laser pulse the molten Au/Pd film provides heat conduction over the characteristic 1/e length σT≈1.55  μm.

I. S. Grigoriev and E. Z. Melikhov, Handbook of Physical Quantities (CRC Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic view of a truncated conical ADP. (b). Calculated TE electric field (Er) mapping at the ADP tip apex for its truncated cone base diameter d=240nm. (c) Calculated (solid curve) and experimental (dotted curve) radial distributions of transmitted laser intensity at the ADP tip for d=240nm. (d) Calculated Δ1/2 (curve 1) and SNR (curve 2) magnitudes versus z.

Fig. 2.
Fig. 2.

Characterization of ADP focusing and nanohole fabrication. (a) Scanning electron microscopy (SEM) images of the fabricated ADP. (b) Experimental setup. (c) Two-dimensional map of laser intensity at the ADP tip, reconstructed from the experimental SNOM measurements with the apertured tip at 50 nm distance from the ADP tip. The scale bar corresponds to 1 μm.

Fig. 3.
Fig. 3.

(a) Squared hole diameter D2 versus ln(E). (b) SEM image of the surface nanofeatures—nanoholes (1) and nanohillocks (2), fabricated at decreasing pulse energies (the scale bar corresponds to 100 nm). (c) AFM profiles of the holes inside the features (1) and (2) in image (b). (d) SEM image of the periodic array of 90 nm wide nanoholes fabricated in the 50 nm Au/Pd film (the interhole spacing and the scale bar are 500 nm).

Metrics