Abstract

It is demonstrated that high spatial frequency filtering of time domain fluorescence signals can allow efficient detection of intrinsic fluorescence lifetimes from turbid media and the rejection of diffuse excitation leakage. The basis of this approach is the separation of diffuse fluorescence signals into diffuse and fluorescent components with distinct spatiotemporal behavior.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, Opt. Lett. 30, 3347 (2005).
    [CrossRef]
  2. S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
    [CrossRef]
  3. S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010 (2009).
    [CrossRef]
  4. M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28, 2331 (1989).
    [CrossRef]
  5. A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, Opt. Lett. 33, 2836 (2008).
    [CrossRef]
  6. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, Opt. Express 14, 12255 (2006).
    [CrossRef]
  7. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
    [CrossRef]
  8. M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
    [CrossRef]
  9. J. Chen, V. Venugopal, F. Lesage, and X. Intes, Opt. Lett. 35, 2121 (2010).
    [CrossRef]

2010 (3)

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[CrossRef]

J. Chen, V. Venugopal, F. Lesage, and X. Intes, Opt. Lett. 35, 2121 (2010).
[CrossRef]

2009 (2)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
[CrossRef]

S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

2008 (1)

2006 (1)

2005 (1)

1989 (1)

Achilefu, S.

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[CrossRef]

Arridge, S. R.

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
[CrossRef]

Bacskai, B. J.

Bassi, A.

Berezin, M. Y.

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[CrossRef]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
[CrossRef]

Boas, D. A.

Boverman, G.

Chance, B.

Chen, J.

Cubeddu, R.

Cuccia, D. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
[CrossRef]

D’Andrea, C.

Dunn, A. K.

Durkin, A. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
[CrossRef]

Intes, X.

Kumar, A. T. N.

Lesage, F.

Patterson, M. S.

Raymond, S. B.

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, Opt. Express 14, 12255 (2006).
[CrossRef]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

Skoch, J.

Tromberg, B. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
[CrossRef]

Valentini, G.

Venugopal, V.

Wilson, B. C.

Appl. Opt. (1)

Chem. Rev. (1)

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[CrossRef]

Inverse Probl. (1)

S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

J. Biomed. Opt. (2)

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, J. Biomed. Opt. 15, 046011 (2010).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Simulation geometry indicating the source (x) and detectors (o) with a single fluorophore (τ=0.3ns) at the center. (b) Normalized TD fluorescence signal UF as a function of rd at various times. Inset shows UF (blue) at the central detector as a function of t, separated into aD (black) and aF (red). (c) Separation of UF into a spatially spreading diffuse amplitude aD (black) and a stationary fluorescent amplitude aF (red). (d) Separation of U˜F into a spatially narrowing a˜D and stationary a˜F. (All curves normalized to the maximum of aF at each time point with scaling factors indicated.)

Fig. 2.
Fig. 2.

Measurement setup up with a 1.75 cm thick intralipid phantom excited at 790 nm at (a) S1 and (b),(c) S2, and detected with a λ>800nm filter. The tube with IRdye800 is shown schematically (color depicts true lifetime) in (b) with water (0.4±0.01ns) and (c) with 50% glycerol (0.72±0.02ns). The CW diffuse fluorescence images and lifetime maps are shown in (d) and (g) for source S1 (similar for both lifetimes), (e) and (h) for S2 with 0.4 ns dye, (f) and (i) for S2 with 0.7 ns dye. (j)–(l) k-space filtered CW intensity dtUfilt [Eq. (4)]. (m)–(o) Lifetime maps (τfilt) from fits to decay of Ufilt(t).

Fig. 3.
Fig. 3.

Lifetime maps in spatial Fourier domain correponding to the TD data in Fig. 2 for (a) the diffuse signal/excitation leakage [S1 in Fig. 2(a)], (b) 0.4 ns dye in intralipid, and (c) 0.72 ns dye in intralipid. (d) Spatial frequency filter.

Fig. 4.
Fig. 4.

Normalized raw TD data for a detector (3×3 pixel area) above the source with a 0.4 ns dye in intralipid [see Fig. 2(b)] for source S1 (black line, square) and S2 (blue line). The spatial Fourier components at (kx,ky)=(4,3)rad/cm are shown for S2 (red line, filled circle) and S1 (black dotted line) and at (kx,ky)=(0,0) for S2 (blue dashed–dotted line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

UFn(rs,rd,t)=aDn(rs,rd,t)+aFn(rs,rd)eΓnt.
aDn=Ωd3r[1πvμadγIm[W˜(rs,rd,r,iγ)]γΓneγt]ηn(r)
U˜Fn(rs,kd,t)=a˜Dn(rs,kd,t)+a˜Fn(rs,kd)eΓnt.
UFfilt(rs,rd,t)=d2kd(2π)2f(kd)U˜F(rs,kd,t)eikd·rd.

Metrics