Abstract

We experimentally demonstrate a superluminal space-to-time mapping process in grating-assisted (GA) codirectional coupling devices, particularly fiber long period gratings (LPGs). Through this process, the grating complex (amplitude and phase) apodization profile is directly mapped into the device’s temporal impulse response. In contrast to GA counterdirectional couplers, e.g., Bragg gratings, this mapping occurs with a space-to-time scaling factor that is much higher than the propagation speed of light in vacuum. This phenomenon has been used for synthesizing customized complex optical pulse data sequences with femtosecond features (3.5Tbit/s data rate) using readily feasible fiber LPG designs, e.g., with subcentimeter resolutions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
    [CrossRef]
  2. L. M. Rivas, M. J. Strain, D. Duchesne, A. Carballar, M. Sorel, R. Morandotti, and J. Azaña, Opt. Lett. 33, 2425 (2008).
    [CrossRef]
  3. J. Azaña, IEEE Photon. J. 2, 359 (2010).
    [CrossRef]
  4. D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
    [CrossRef]
  5. H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).
  6. J. Azaña and L. R. Chen, J. Opt. Soc. Am. B 19, 2758 (2002).
    [CrossRef]
  7. R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, Opt. Express 21, 6249 (2013).
    [CrossRef]
  8. M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011).
    [CrossRef]
  9. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  10. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  11. M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, J. Lightwave Technol. 30, 1931 (2012).
    [CrossRef]

2013

2012

2011

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011).
[CrossRef]

2010

J. Azaña, IEEE Photon. J. 2, 359 (2010).
[CrossRef]

2008

L. M. Rivas, M. J. Strain, D. Duchesne, A. Carballar, M. Sorel, R. Morandotti, and J. Azaña, Opt. Lett. 33, 2425 (2008).
[CrossRef]

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
[CrossRef]

2002

2001

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

1997

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1995

1976

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).

Ashrafi, R.

Azaña, J.

Balakrishnan, M.

Bartelt, H.

Becker, M.

Bock, W. J.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011).
[CrossRef]

Carballar, A.

Chen, J.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011).
[CrossRef]

Chen, L. R.

Chériaux, G.

Duchesne, D.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Ibsen, M.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
[CrossRef]

Joffre, M.

Kobelke, J.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).

LaRochelle, S.

Leaird, D. E.

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

Lepetit, L.

Li, M.

Mikulic, P.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011).
[CrossRef]

Morandotti, R.

Ng, T. T.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
[CrossRef]

Parmigiani, F.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
[CrossRef]

Petropoulos, P.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
[CrossRef]

Richardson, D. J.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
[CrossRef]

Rivas, L. M.

Rothhardt, M.

Schuster, K.

Schwuchow, A.

Smietana, M.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011).
[CrossRef]

Sorel, M.

Spittel, R.

Strain, M. J.

Weiner, A. M.

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).

IEEE J. Quantum Electron.

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

IEEE Photon. J.

J. Azaña, IEEE Photon. J. 2, 359 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the experimentally demonstrated superluminal space-to-time mapping process in LPGs [7]. (b) Picture of the used fiber-optic approach to transfer the cross-coupling signal from the fiber LPG’s cladding mode into a fiber core mode by a misaligned fiber splicing. The picture was captured with the camera of the fiber fusion splicing machine (Fujikura FSM-30S). (c) Experimental setup for time-domain characterization of the fabricated LPG designs. OPO, optical parametric oscillator; OSA, optical spectrum analyzer; DSF, dispersion shifted fiber.

Fig. 2.
Fig. 2.

(a)–(c) Fabricated fiber LPG designs for generation of 4 bit data streams, i.e., “1”0”0”1, “1”0”0”1”, and “1”0”1”1”, respectively, with a target speed of 3.5Tbit/s. (d)–(f) Corresponding experimental spectrum measurements of the femtosecond optical pulse from the OPO laser before (solid black Gaussian curves) and after (solid blue modulated Gaussian curves) propagation through the fabricated LPGs, compared with the simulated linear spectral responses of the LPGs (dotted green curves) to the same input OPO laser pulse spectrum. The spectra are represented in normalized units (n.u.).

Fig. 3.
Fig. 3.

(a)–(c) Measured output time-domain amplitude (solid blue curves) and phase (solid green curves) responses of the fabricated LPGs. (d)–(f) Corresponding simulation results for the temporal amplitude (solid blue curves) and phase (solid green curves) responses of the designed LPGs to the OPO laser pulse data. The dotted red curves in (d)–(f) represent the ideal time-domain impulse response amplitudes, obtained by using the predicted superluminal space-to-time scaling of the ideal space-domain profiles in Figs. 2(a)2(c).

Metrics