Abstract

We report the experimental realization of an ultrafast (terahertz-bandwidth) linear optical signal processor, particularly a picosecond flat-top optical pulse shaper, based on a fiber Bragg grating (FBG) working in transmission. The used FBG design technique, based on a specially apodized linearly chirped FBG, enables the synthesis of readily feasible devices with processing bandwidths well in the terahertz range. The specific device reported here is successfully demonstrated for reshaping ultrashort (400 fs FWHM) optical Gaussian-like pulses into 2 ps flat-top pulses.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
    [CrossRef]
  2. M. Li, D. Janner, J. Yao, and V. Pruneri, Opt. Express 17, 19798 (2009).
    [CrossRef]
  3. J. Ge, C. Wang, and X. Zhu, Opt. Commun. 284, 3251 (2011).
    [CrossRef]
  4. M. H. Asghari, C. Wang, J. Yao, and J. Azaña, Opt. Lett. 35, 1191 (2010).
    [CrossRef]
  5. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  6. Y. Park, M. Kulishov, R. Slavík, and J. Azaña, Opt. Express 14, 12670 (2006).
    [CrossRef]
  7. J. Skaar, J. Opt. Soc. Am. A 18, 557 (2001).
    [CrossRef]
  8. M. A. Preciado and M. A. Muriel, Opt. Lett. 34, 752 (2009).
    [CrossRef]
  9. M. A. Preciado, X. Shu, and K. Sudgen, Opt. Lett. 38, 70 (2013).
    [CrossRef]
  10. N. Q. Ngo, Opt. Lett. 32, 3020 (2007).
    [CrossRef]
  11. M. R. Fernández-Ruiz, A. Carballar, and J. Azaña, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2012), paper BW4E.3.
  12. A. M. Weiner, Prog. Quantum Electron. 19, 161(1995).
    [CrossRef]
  13. R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
    [CrossRef]
  14. H. Li, Y. Nakamura, K. Ogusu, Y. Sheng, and J. E. Rothenberg, Opt. Express 13, 1281 (2005).
    [CrossRef]
  15. Y. Park, F. Li, and J. Azaña, IEEE Photon. Technol. Lett. 18, 1798 (2006).
    [CrossRef]

2013 (1)

2011 (1)

J. Ge, C. Wang, and X. Zhu, Opt. Commun. 284, 3251 (2011).
[CrossRef]

2010 (1)

2009 (2)

2007 (1)

2006 (2)

Y. Park, M. Kulishov, R. Slavík, and J. Azaña, Opt. Express 14, 12670 (2006).
[CrossRef]

Y. Park, F. Li, and J. Azaña, IEEE Photon. Technol. Lett. 18, 1798 (2006).
[CrossRef]

2005 (1)

2001 (2)

1999 (1)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

1995 (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161(1995).
[CrossRef]

Asghari, M. H.

Azaña, J.

M. H. Asghari, C. Wang, J. Yao, and J. Azaña, Opt. Lett. 35, 1191 (2010).
[CrossRef]

Y. Park, M. Kulishov, R. Slavík, and J. Azaña, Opt. Express 14, 12670 (2006).
[CrossRef]

Y. Park, F. Li, and J. Azaña, IEEE Photon. Technol. Lett. 18, 1798 (2006).
[CrossRef]

M. R. Fernández-Ruiz, A. Carballar, and J. Azaña, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2012), paper BW4E.3.

Carballar, A.

M. R. Fernández-Ruiz, A. Carballar, and J. Azaña, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2012), paper BW4E.3.

Ellis, A. D.

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Fernández-Ruiz, M. R.

M. R. Fernández-Ruiz, A. Carballar, and J. Azaña, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2012), paper BW4E.3.

Ge, J.

J. Ge, C. Wang, and X. Zhu, Opt. Commun. 284, 3251 (2011).
[CrossRef]

Ibsen, M.

Janner, D.

Kulishov, M.

Li, F.

Y. Park, F. Li, and J. Azaña, IEEE Photon. Technol. Lett. 18, 1798 (2006).
[CrossRef]

Li, H.

Li, M.

Muriel, M. A.

M. A. Preciado and M. A. Muriel, Opt. Lett. 34, 752 (2009).
[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Nakamura, Y.

Ngo, N. Q.

Ogusu, K.

Park, Y.

Y. Park, F. Li, and J. Azaña, IEEE Photon. Technol. Lett. 18, 1798 (2006).
[CrossRef]

Y. Park, M. Kulishov, R. Slavík, and J. Azaña, Opt. Express 14, 12670 (2006).
[CrossRef]

Petropoulos, P.

Preciado, M. A.

Pruneri, V.

Richardson, D. J.

Rothenberg, J. E.

Sheng, Y.

Shu, X.

Skaar, J.

Slavík, R.

Sudgen, K.

Wang, C.

Weiner, A. M.

A. M. Weiner, Prog. Quantum Electron. 19, 161(1995).
[CrossRef]

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

Yao, J.

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Zhu, X.

J. Ge, C. Wang, and X. Zhu, Opt. Commun. 284, 3251 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Park, F. Li, and J. Azaña, IEEE Photon. Technol. Lett. 18, 1798 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Ge, C. Wang, and X. Zhu, Opt. Commun. 284, 3251 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Prog. Quantum Electron. (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161(1995).
[CrossRef]

Other (2)

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

M. R. Fernández-Ruiz, A. Carballar, and J. Azaña, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2012), paper BW4E.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic for the pulse shaper based on a specially apodized LC-FBG in transmission.

Fig. 2.
Fig. 2.

(a) Synthesized grating-apodization profile (dashed blue line) and smoothed grating-apodization profile with a spatial resolution of 1 mm (solid red line). (b) Grating period profile synthesized (dashed blue line) and obtained from the phase mask information (solid red line).

Fig. 3.
Fig. 3.

(a) Spectrum of the input optical pulse, (b) transmissive power spectral density, and (c) spectral phase: synthesized ideal response (blue line), modeled response (dashed red line), and response of the fabricated device (dotted black line).

Fig. 4.
Fig. 4.

Temporal signals from FTSI: crossed blue line, ideal input pulse; dotted green line, experimental input pulse; dotted-dashed black line, ideal output pulse; dashed red line, measured flat-top output pulse; solid purple line, output pulse obtained numerically from the experimental input pulse and the ideal grating response; dotted line, phase of the measured output pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

HR(f)=W(f)Rmax(1|sinc(f·τFWHM)|2)·ej2π(πDf2+δf),

Metrics